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P r e f a c e  

The contributions in this book are based on the conference "Law and Prediction 
in Natural Science in the Light of our New Knowledge from Chaos Research" 
held at the Institut fiir Wissenschaftstheorie, Internationales Forschungszen- 
trum, Salzburg, July 1994. The papers given at the conference have been re- 
vised and partially extended, taking into account the discussion and scientific 
communication at the conference. Great emphasis has been given to the discus- 
sions among the participants. Preliminary versions of the papers were distributed 
among the participants one month before the conference. Each participant had 
about an hour for the presentation of his paper and an hour for discussion af- 
terwards. Since important additions and clarifications have emerged from the 
discussions, important parts of them have been included in the proceedings. 

There were people who were invited to the conference but could not attend 
because of other commitments (Prigogine, Lighthill, Nicolis and Haken). They 
agreed to send their papers or c'omments. Peter Schuster who attended the con- 
ference was not able to send his paper. 

The editors would like to thank the publisher, especially Prof. Wolf Bei- 
glbSck, Gabriele K6brunner-Krisch for writing the manuscript and transcribing 
the discussions from the tape and Helmut Prendinger for the conversion into 
ISTEX. Last but not least the editors would like to express their gratitude in the 
name of all participants of the conference to those institutions that generously 
sponsored this research conference: The Austrian Bundesministerium fiir Wis- 
senschaft und Forschung, Vienna and the Internationales Forschungszentvum, 
Salzburg. 

Paul Weingartner 

Gerhard Schurz 
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Time  Chaos and the Laws of  Nature  

I. Prigogine 

International Solvay Institutes, Belgium 

As I was unable to attend the conference "Law and Prediction in (Natural) 
Science in the Light of our New Knowledge from Chaos Research," I am glad to 
present here a few remarks. Time, as incorporated in the basic laws of physics, 
from classical Newtonian dynamics to relativity and quantum physics, does not 
include any distinction between past and future. These laws are time reversible 
and deterministic. Yet on all levels, from cosmology to human sciences, future 
and past play different roles. 

For many scientists, we as humans, imperfect observers, would be respon- 
sible for the difference between past and future through the approximations 
(such as "coarse graining") we would introduce in our description of nature. 
The arrow of time would be part  of "phenomenology" and not included in the 
fundamental description of nature. But over the last decades, physics of nonequi- 
librium processes has led to spectacular advances. 1 It  led to concepts such as 
self-organization and dissipative structures which are widely used today. These 
phenomena illustrate the constructive role of the arrow of time. Irreversibility 
can no longer be identified with a mere appearance that  would dissapear if we 
had "perfect" knowledge; therefore, the claim that  the arrow of t ime is only 
"phenomenological" becomes absurd. We are the children of time, of evolution 
and not its progenitors. 

There is a second development that  is crucial for the problem of time; tha t  is 
the dynamics of "unstable" systems. This includes deterministic chaos as well as 
classes of nonintegrable systems in the sense of Poincar~. We shall come back to 
the definition of such systems in section 3. My point of view has always been that  
instability forces us to generalize the laws of classical and quantum mechanics. 2 

Thanks to remarkable advances in functional analysis? this program has 
been largely realized. Once instability is included, the meaning of laws of nature 
changes radically, as they have to be formulated on the statistical level. They  no 
longer express "certitudes" but "possibilities." In this brief note, I would like to 
summarize the basic steps in this development. 4 

1 See Nicolis (1989); I may be permitted to mention that my first paper emphasizing 
self-organization as the result of irreversible processes appeared already in 1945! 
See i. e. Prigogine (1980). 

3 Gelfand and Vilenkin (1964); Maurin (1968); Bohm and Gadella (1989). 
4 Prigogine (1993); French translation (1994); Prigogine and Stengers (1993). 
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II 

I shall first consider deterministic chaos. The simplest example is the Bernoulli 
map. Every second we multiply the number x~ contained in the interval (0-1) 
by two. After multiplication, we reinject it into the interval. The "equation of 
motion" is therefore 

xn+l : 2xn mod 1 (2.1) 

It  is well-known that  this leads to trajectories that  diverge exponentially. The 
exponent is called the Lyapunov exponent. Here it is Ig2. This is an example of 
"sensitivity to initial conditions." 

Instead of the trajectory description, we can also introduce a probabilistic 
description in terms of the distribution functions pn(x). Each second pn(x) is 
modified through the action of an operator U. The map is then described 

p.+~(~) = up.(~) (2.2) 

where U is called the Perron-Frobenius operator. 5 The basic question is then, 
"Are these two descriptions equivalent?". The answer for chaotic maps is no, the 
statistical description admits new solutions which cannot be expressed in terms 
of trajectories, since quantum mechanics operator calculus has become part  of 
the daily arsenal of physicists. All textbooks in quantum mechanics describe 
how to obtain eigenfunctions and eigenvalues of operators. We want to apply a 
similar method U, the Perron-Frobenius operator. 

In this simple case, we easily can obtain the explicit form of U. It  is 

up(x )  = 5 p + p 

The solution of the statistical problem requires, as in quantum mechanics, the 
spectral resolution of U, that  is the determination of its eigenfunctions and 
eigenvalues. But there is a difference. In quantum mechanics, we consider usually 
operators that  act on "nice" normalizable functions. These functions belong to 
the so-called Hilbert space, which is an extension of the simple vector space. Here, 
the eigenfunctions do not exist in the usual Hilbert space of normed functions, 
but  only in generalized function spaces. 6 The result is 7 

v = (2 .4 )  

The right eigenfunctions Bn(x) are regular functions, the Bernoulli polynomials; 
but  the left eigenfunctions are generalized functions, in this simple case they 

5 Lasota and Mackey (1985). 
6 Gelfand and Vilenkin (1964); Maurin (1968); Bohm and Gadella (1989). 
7 Some recent papers dealing with the spectral decompostion of chaotic maps are: 

Hasegawa and Saphir (1992), p. 471; Gaspard (1992), p. 303; Antoniou and Tasaki 
(1993), p. 73; Antoniou and Tasaki (1992); Hasegawa and Driebe (1994). 
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are derivatives of the delta function. This is the function ~(x) which is infinite 
for x = 0 and vanishing elsewhere. Such spectral decompositions have now been 
obtained for a large class of chaotic systems, including invertible systems (such 
as the so-called baker transformation), s In general, eigenfunctions of maps are 
"fractals" that  are outside the Hilbert space. The main conclusion is tha t  ex- 
pressions such as (2.4) for the evolution operator (called spectral decomposition) 
can only be applied to distribution functions p, which are "test functions" (such 
as continuous, differentiable functions) and not to individual trajectories, which 
are themselves singular functions represented by 6(x - x~) where x = Xn, which 
are singular functions (therefore the scalar product  ( /~  (x)l~(x - x~)) diverges. 
The basic conclusion is that  deterministic chaos leads to a statistical formula- 
tion. The equivalence between the individual description (2.1) and the statistical 
description (2.2) is broken. 

We have indeed new solutions for ensembles that  contain the approach to 
equilibrium (at each iteration, the Bernouilli polynomial B~ (x) is multiplied by 
~ ) ,  so in the limit of infinite number of iterations only Bo(x), which is equal 
to one, survive; this is the equilibrium distribution. The Bernouilli map is not 
invertible (if instead of (2.1) we would consider Xn+l = �89 we would sim- 
ply reach the origin, but there are also time-invertible maps (such as the Baker 
transformation),  which can be analyzed in the same way. In simple cases, we 
have both a spectral representation in the Hilbert space, which is t ime reversible 
and corresponds to a dynamical group, and a spectral representation in general- 
ized function spaces, which includes time symmetry breaking. The characteristic 
rates at which the distribution function reaches equilibrium (as well as other 
characteristics of irreversible processes) now appear in the spectrum. The basic 
laws of chaos can be expressed in terms of statistical laws once we go beyond 
the Hilbert space. We see already in these examples that  the breaking of time 
symmetry  and therefore the extension of dynamics to include irreversibility is 
associated to a precise problem of modern mathematics (called functional anal- 
ysis). 

III 

We come now to Hamiltonian systems, be it in classical or quantum mechan- 
ics. Here, also there are two descriptions, the "individual description" in terms 
of trajectories in classical mechanics, in terms of wave functions (SchrSdinger 
equation) in quantum mechanics and the "statistical description" in terms of 
probability distributions p or density matrices. The statistical description is in 
terms of the Liouville operator L 

Op 
~-~ = Lp (3.1) 

s Prigogine (1993), french transl. (1994); Prigogine and Stengers (1993). 
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here Lp is the Poisson bracket in classical mechanics, the commutator  with the 
Hamiltonian in quantum mechanics. It has always been assumed that  the two de- 
scriptions were equivalent. Probability distributions were introduced for "practi- 
cal reasons" or as approximations. Indeed, at first it seems that  nothing is gained. 
The  Liouville operator L belongs to the class of so-called "hermitian operators",  
whose eigenvalues are real in the Hilbert space, but  this is no longer so when 
we can extend L outside the Hilbert space. There are well defined conditions 
to be able to do so. There is first the question of integrability. 9 The problem of 
integrability is at the center of the fundamental work of Henri Poincar6. In short, 
whenever the Hamiltonian can be expressed in terms only of the momenta  (often 
called "action variables"), the system is integrable; moreover, Poincar~ identified 
the reason for nonintegrability: The existence of resonances between the various 
degrees of freedom. For example, consider a system characterized by two degrees 
of freedom. The corresponding frequencies are wl, w2. Whenever nlWl + n20J2 = 0 
with nln2 non vanishing integers, we have resonance. These resonances lead to 
the problem of small denominators as they show up in perturbation calculations 
through dangerous denominators 1 

~ I  r + n 2 L 0 2  - 

The  importance of Poincar~ resonances is well recognized today (it led to 
the so-called KAM theory). They give rise to random trajectories. In this sense 
we may say that  Poincar~ resonances are also associated to chaos. We shall be 
mainly interested in so-called "Large Poincar~ Systems" (LPS), in which the 
frequency wk depends continuously on the wave vector k. 

A simple example is provided by the interaction between an oscillator wl cou- 
pled to a field. Resonances appear when the field frequencies wk are equal to the 
oscillator frequency Wl. Resonances in LPS are responsible for fundamental phe- 
nomena such as emission or absortion of light, decay of unstable particles...they 
play a fundamental role both in classical and quantum physics. 

Let us now come back to our basic problem, the equivalence between the "in- 
dividual" and the "statistical" description. Whatever the solution of the problem 
of integrability, (3.1) leads only to irreversible processes as long as we remain 
in the Hilbert space. As mentioned, the operator (better  the superoperator) L 
is hermitian and its eigenvalues are real in the Hilbert space. We need, as in 
deterministic chaos (see 2.4), an extension Hilbert space. 

Here we come to an essential point. When we consider this room, molecules 
in the atmosphere continously collide one with the other. We have "persistent" 
interactions. This is in contrast with transitory interactions as considered, i.e. in 
ordinary scattering experiments (described by the "S-matrix" theory) in which 
we have free asymptotic "in" and "out" states. Now to describe persistent in- 
teractions we have to introduce singular distribution functions. For example, if 
we consider a distribution function p(q, p) where q is the coordinate and p the 
momentum and impose boundary conditions such as 

P(q,P) ---~Po(P) for q--* -t-oo (3.2) 

9 Prigogine (1962). 
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this requires, as shown in elementary mathematics, singular Fourier transforms 
with a delta singularity in the Fourier index k 

Pk(P)=PO(P)6(k)+pk(P) (3.3) 

Already in equilibrium statistical mechanics where the distribution function is a 
function of the Hamiltonian H, p is a singular function (note that the Hamilto- 
nian contains the kinetic energy which is also "delocalized"). 

Our basic mathematical problem is the derivation of the spectral represen- 
tation of the Liouville operator L for LPS and singular delocalized distribution 
functions. This problem has been recently solved, l~ For example we may look 
for eigenfunctions F(q,p; a) of L such that their Fourier components have the 
same singularity as in (3.3) 

Fk(p; c~) = F~(p, o~)5(k) + F~(p; e~) (3.4) 

where F~(p; or) is a regular function of k. This problem has a meaning both 
in classical and quantum mechanics. In quantum mechanics we start with the 
momentum representation (P'MP"> of the density matrix and introduce new 

p' + p" 
variables p ' - p "  = k and 2 = P (note the relation with the so-called Wigner 
representation). 

Complete sets of eigenfunctions have been obtained. There appear diffusive 
"non-Newtonian" and "non-Schr6dinger" types of contributions. In the extension 
of L beyond the Hilbert space L is no more a commutator, as it is for integrable 
quantum systems, the eigenvalues are complex and the eigenfunctions are not 
implentable by wave functions (or trajectories). 

The origin of the new contributions is the coupling of dynamical events 
through Poincar6 resonances. This coupling leads to diffusive effects of the 
Fokker-Planck type in classical mechanics, of the Pauli type in quantum me- 
chanics. We call more generally these operators associated to diffusion "collision 
operators". The collision operators play a dominant role in the dynamics as 
described in generalized function spaces (often called "rigged" Hilbert spaces). 
They are responsible for the time symmetry breaking. It can be shown that the 
eigenvalues of the Liouville operator are equal to the eigenvalues of the collision 
operators and the eigenfunctions are obtained by operators acting on the eigen- 
functions of the collsion operators. For example, for persistent one-dimensional 
quantum scattering, we obtain eigenfunctions whose momentum representation 
are 

--~2~2 [3(p - c~) + 6(p + o~) (3.5) 

and 

~/~[ 6(p - a) - 5(p + a) (3.6) 

a0 Petrosky and Prigogine (1995). 
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These eigenfunctions are superpositions of distributions and cannot be written 
as equilibrium, its eigenvalue is zero, while the eigenvalue corresponding to (3.6) 
is the cross section (which is not a difference between two numbers). The  usual 
structure of quantum mechanics is destroyed. (Note that  in the Hilbert space 
eigenfunctions of the Liouvillian are products of wave functions, and the eigen- 
values are different.) 

The physics of nonequilibrium processes lies in the new solutions of the Li- 
ouville equation, which are irreducible to wave functions or trajectories. These 
deviations from classical or quantum mechanics vanish for localized distribution 
functions, which correspond to situations described in terms of the Hilbert space. 

This conclusion is in agreement with our intuition and with physical experi- 
ence; indeed dissipation appears in "large" Hamiltonian systems, m There is an 
analogy with phase transitions. Here also the 'Whole" is more than its "parts." 
Irreversibility is an emerging property, as are also phase transitions, it can only 
be defined on the level of "populations". Once we have dynamics with broken 
time symmetry, we can easily construct dynamic expressions for entropy. The 
message of entropy is not "ignorance", on the contrary, it is the expression that  
we live in a world of broken time symmetry. Our approach leads to a number 
of predictions. Delocalized distribution functions can be prepared in computer 
simulations and our theoretical predictions have been tested successfully. 12 

It is precisely in macroscopic physics, which deals with delocalized situations 
where irreversiblity is so obvious, tha t  the traditional description in terms of tra- 
jectories or wave functions fails. Note also that  our approach leads to a realistic 
formulation of quantum theory, as there is no longer any need for extradynami- 
cal features to take into account the collapse of the wave functions.13 No special 
role has to be attr ibuted to the observer. There have been many proposals in the 
past to extend quantum mechanics (many world theories, alternative histories) 
but  they remained on a purely verbal level. In contrast, our approach is a "down 
to earth" one based on dynamical considerations. In the past, physical ideas 
have always been associated with new mathematical developments. This is true 
for quantum mechanics and for relativity. This is also true here; the problem 
of irreversibility can be solved only by an approximate extension of functional 
analysis, which makes apparent properties of mat ter  hidden until today. Let us 
also notice that  this approach is of great interest in other fields, such as con- 
sensed matter  and cosmology. But  it is time to conclude. Dynamical instability 
coupled to persistent interactions changes the very meaning of laws of nature. 
The future is no more given, following the expression of the French poet Paul 
Val@ry, future is construction, a construction in which we participate. 

xl In classical dynamics even "small" Hamiltonian systems (corresponding to maps 
or Poincar@ systems) may already lead to irreversible processes. A well documented 
example is the kicked rotator. But we wanted to concentrate here on situations which 
are of importance both in classicM and qunatum mechanics. 

12 Petrosky and Prigogine (1993a); Petrosky and Prigogine (1993b; Petrosky and Pri- 
gogine (1994); F'rigogine and Petrosky (to appear). 

13 Rae (1989). 
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N a t u r a l  Laws  and H u m a n  P r e d i c t i o n  

B. Chirikov 

Budker Institute of Nuclear Physics, Russia 

Abs t rac t .  Interrelations between dynamical and statistical laws in physics, on the one 
hand, and between classical and quantum mechanics, on the other hand, are discussed 
within the philosophy of separating the natural from the human, as a very specific part 
of Nature, and with emphasis on the new phenomenon of dynamical chaos. 
The principal results of the studies of chaos in classical mechanics are presented in 
some detail, including the strong local instability and robustness of motion, continuity 
of both phase space and the motion spectrum, and the time reversibility but nonrecur- 
rency of statistical evolution, within the general picture of chaos as a specific case of 
dynamical behavior. 
Analysis of the apparently very deep and challenging contradictions of this picture 
with the quantum principles is given. The quantum view of dynamical chaos, as an at- 
tempt to resolve these contradictions guided by the correspondence principle and based 
upon the characteristic time scales of quantum evolution, is explained. The picture of 
quantum chaos as a new generic dynamical phenomenon is outlined together with a 
few other examples of such chaos: linear (classical) waves, the (many-dimensional) har- 
monic oscillator, the (completely integrable) Toda lattice, and the digital computer. 
I conclude with discussion of the two fundamental physical problems: quantum mea- 
surement (C-collapse), and the causality principle, which both appear to be related to 
the phenomenon of dynamical chaos. 

1 Phi losophical  Introduction:  Separation of  the Natura l  
from the  H u m a n  

The main purpose of this paper is the analysis of conceptual implications from 
the studies of a new phenomenon (or rather a whole new field of phenomena) 
known as dynamical chaos both in classical and especially in quantum mechanics. 
The concept of dynamical chaos resolves (or, at least, helps to do so) the two 
fundamental problems in physics and, hence, in all the natural sciences: 

- are the dynamical and statistical laws of a different nature or does one of 
them, and which one, follow from the other; 

- are classical and quantum mechanics of a different nature or is the latter the 
most universal and general theory currently available to describe the whole 
empirical evidence including the classical mechanics as the limiting case. 

The essence of my debut philosophy is the separation of the human from 
the natural following Einstein's approach to the science - building up a model of 
the real world. Clearly, the human is also a part of the world, and moreover the 
most important part for us as human beings but not as physicists. The whole 
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phenomenon of life is extremely specific, and one should not transfer its peculiar- 
ities into other fields of natural sciences as was erroneously (in my opinion) done 
in almost all major philosophical systems. One exception is positivism, which 
seems to me rather dull; it looks only at Nature but does not even want to see its 
internM mechanics. Striking examples of the former are Hegel's 'Philosophy of 
Nature' (Naturphilosophie) and its 'development', Engels' 'Dialectic of Nature'. 

Another notorious confusion of such a 'human-oriented' physics was Wigner's 
claim that quantum mechanics is incompatible with the existence of self-reproducing 
systems (Wigner (1961)). The resolution of this 'paradox' is just in that Wigner 
assumed the Hamiltonian of such a system to be arbitrary, whereas it is actually 
highly specific (Schuster (1994)). 

A more hidden human-oriented philosophy in physics, rather popular nowa- 
days, is the information-based representation of natural laws, particularly when 
information is substituted for entropy (with opposite sign). In the most general 
way such a philosophy was recently presented by Kadomtsev (1994). That ap- 
proach is possible and might be done in a self-consistent way, but one should be 
very careful to avoid many confusions. In my opinion, the information is an ad- 
equate conception for only the special systems that actually use and process the 
information like various automata, both natural (living systems) and man-made 
ones. In this case the information becomes a physical notion rather than a human 
view of natural phenomena. The same is also true in the theory of measurement, 
which is again a very specific physical process, the basic one in our studies of 
Nature but still not a typical one for Nature itself. This is crucially important in 
quantum mechanics as will be discussed in some detail below (Sections 2.4 and 
3.1). 

One of the major implications from studies of dynamical chaos is the concep- 
tion of statistical laws as an intrinsic part of dynamics without any additional 
statistical hypotheses [for the current state of the theory see, e.g., Lichtenberg 
and Lieberman (1992) and recent collection of papers by Casati and Chirikov 
(1995) as well as the introduction to this collection by Casati and Chirikov 
(1995a)]. This basic idea can be traced back to Poincar6 (1908) and Hadamard 
(1898), and even to Maxwell (1873); the principal condition for dynamical chaos 
being strong local instability of motion (Section 2.4). In this picture the statis- 
tical laws are considered as secondary with respect to more fundamental and 
general primary dynamical laws. 

Yet, this is not the whole story. Surprisingly, the opposite is also true[ Namely, 
under certain conditions the dynamical laws were found to be completely con- 
tained in the statistical ones. Nowadays this is called 'synergetics' (Haken (1987), 
Wunderlin (these proceedings)) but the principal idea goes back to Jeans (1929) 
who discovered the instability of gravitating gas (a typical example of a statis- 
tical system), which is the basic mechanism for the formation of galaxies and 
stars in modern cosmology, and eventually the Solar system, a classical example 
of a dynamical system. In this case the resulting dynamical laws proved to be 
secondary with respect to the primary statistical laws which include the former. 
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Thus, the whole picture can be represented as a chain of dynamical-statistical 
inclusions: 

D s.. .7.. .  (1.1) 

Both ends of this chain, if any, remain unclear. So far the most fundamental 
(elementary) laws of physics seem to be dynamical (see, however, the discussion 
of quantum measurement in Sections 3 and 4). This is why I begin chain (1.1) 
with some primary dymamical laws. 

The strict inclusion on each step of the chain has a very important conse- 
quence allowing for the so-called numerical experiments, or computer simulation, 
of a broad range of natural processes. As a matter of fact the former (not labo- 
ratory experiments) are now the main source of new information in the studies 
of the secondary laws for both dynamical chaos and synergetics. This might 
be called the third way of cognition, in addition to laboratory experiments and 
theoretical analysis. 

In what follows I restrict myself to the discussion of just a single ring of 
the chain as marked in (1.1). Here I will consider the dynamical chaos sepa- 
rately in classical and quantum mechanics. In the former case the chaos explains 
the origin and mechanism of random processes in Nature (within the classical 
approximation). Moreover, that  deterministic randomness may occur (and is 
typical as a matter of fact) even for a minimal number of degress of freedom 
N :> 1 (for Hamiltonian systems), thus enormously expanding the domain for 
the application of the powerful methods of statistical analysis. 

In quantum mechanics the whole situation is much more tricky and still 
remains rather controversial. Here we encounter an intricate tangle of various 
apparent contradictions between the correspondence principle, classical chaotic 
behavior, and the very foundations of quantum physics. This will be the main 
topic of my discussions below (Section 3). 

One way to untangle this tangle is the new general conception, pseudochaos, 
of which quantum chaos is the most important example. Another interesting 
example is the digital computer, also very important in view of the broad ap- 
plication of numerical experiments in the studies of dynamical systems. On the 
other hand, pseudochaos in computers will hopefully help us to understand quan- 
tum pseudochaos and to accept it as a sort of chaos rather than a sort of regular 
motion, as many researchers, even in this field, still do believe. 

The new and surprising phenomenon of dynamical chaos, especially in quan- 
tum mechanics, holds out new hopes for eventually solving some old, long- 
standing, fundamental problems in physics. In Section 4, I will briefly discuss 
two of them: 

- the causality principle (time ordering of cause and effect), and 
- C-collapse in the quantum measurement. 

The conception of dynamical chaos I am going to present here, which is not 
common as yet, was the result of the long-term Siberian-Italian (SI) collabora- 
tion including Giulio Casati and Italo Guarneri (Como), and Felix Izrailev and 
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Dima Shepelyansky (Novosibirsk) with whom I share the responsibility for our 
joint scientific results and the conceptual interpretation. 

2 Sc ient i f i c  R e s u l t s  and  C o n c e p t u a l  Impl i ca t ions :  
t h e  Class i ca l  L imi t  

Classical dynamical chaos, as a part of classical mechanics, was historically the 
first to have been studied simply because in the time of Boltzmann, Maxwell, 
Poincar~ and other founders, statistical mechanics and quantum mechanics did 
not exist. No doubt, the general mathematical theory of dynamical systems, 
including the ergodic theory as its modern part describing various statistical 
properties of the motion, has arisen from (and is still conceptually based on) 
classical mechanics (Kornfeld et al. (1982), Katok and Hasselblatt (1994)). Yet, 
upon construction, it is not necessarily restricted to the latter and can be applied 
to a much broader class of dynamical phenomena, for example, in quantum 
mechanics (Section 3). 

2.1 W h a t  is a Dynamica l  Sys tem? 

In classical mechanics, 'dynamical system' means an object whose motion in 
some dynamical space is completely determined by a given interaction and the 
initial conditions. Hence, the synonym deterministic system. The motion of such 
a system can be described in two seemingly different ways which, however, prove 
to be essentially equivalent. 

The first one is through the motion equations of the form 

dx 
d--/ = v(x, t), (2.1) 

which always have a unique solution 

x = x(t, x0) (2.2) 

Here x is a finite-dimensional vector in the dynamical space and x 0 is the initial 
condition Ix 0 -- x(0)]. A possible explicit time-dependence in the right-hand 
side of (2.1) is assumed to be a regular, e.g., periodic, one or, at least, one with 
a discrete spectrum. 

The most important feature of dynamical (deterministic) systems is the ab- 
sence of any random parameters or any noise in the motion equations. Partic- 
ularly for this reason I will consider a special class of dynamical systems, the 
so-called Hamiltonian (nondissipative) systems, which are most fundamental in 
physics. 

Dissipative systems, being very important in many applications, are neither 
fundamental (because the dissipation is introduced via a crude approximation 
of the very complicated interaction with some 'heat bath') nor purely dynamical 
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in view of principally inevitable random noise in the heat bath (fluctuation- 
dissipation theorem). In a more accurate and natural way the dissipative systems 
can be described in the frames of the secondary dynamics (S D D inclusion in 
(1.1)) when both dissipation and fluctuations are present from the beginning in 
the primary statistical laws. 

A purely dynamical system is necessarily the closed one, which is the main 
object in fundamental physics. Thus, any coupling to the environment is com- 
pletely neglected. I will come back to this important question below (Section 
2.4). 

In Hamiltonian mechanics the dynamical space, called phase space, is an even- 
dimensional one composed of N pairs of canonically conjugated 'coordinates' and 
'momenta',  each pair corresponding to one freedom of motion. 

In the problem of dynamical chaos the initial conditions play a special role: 
they completely determine a particular trajectory, for a given interaction, or a 
particular realization of a dynamical process which may happen to be a very 
specific, nontypical, one. To get rid of such singularities another description 
is useful, namely the Liouville partial differential equation for the phase space 
density, or distribution function f (x ,  t): 

Off = ]~f (2.3) 
Ot 

with the solution 
f = f (x ,  t; f0(x)). (2.4) 

Here L is a linear differential operator, and fo(x) = f (x ,  0) is the initial density. 
For any smooth f0 this description provides the generic behavior of a dynamical 
system via a continuum of trajectories. In the special case f0 = 6(x - xo) the 
density describes a single trajectory like the motion equations (2.1). 

In any case the phase space itself is assumed to be continuous, which is the 
most important feature of the classical picture of motion and the main obstacle 
in the understanding of quantum chaos (Section 3). 

2.2 W h a t  is D y n a m i c a l  C h a o s ?  

Dynamical chaos can be characterized in terms of both the individual trajecto- 
ries and the trajectory ensembles, or phase density. Almost all trajectories of a 
chaotic system are in a sense most complicated (they are unpredictable from ob- 
servation of any preceding motion to use this familiar human term). Exceptional, 
e.g., periodic trajectories form a set of zero invariant measure, yet it might be 
everywhere dense. 

An appropriate notion in the theory of chaos is the symbolic trajectory first 
introduced by Hadamard (1898). The theory of symbolic dynamics was devel- 
oped further by Morse (1966), Bowen (1973), and Alekseev and Yakobson (1981). 
The symbolic trajectory is a projection of the true (exact) trajectory on to a 
discrete partition of the phase space at discrete instants of time t~, e.g., such 
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that  t~+l - t ~  = T fixed. In other words, to obtain a symbolic t rajectory we first 
turn from the motion differential equations (2.1) to the difference equations over 
a certain time interval T: 

x(t +l) - x +l = M(x , (2.5) 

This is usually called mapping or map: xn --~ xn+l. Then, while running a 
(theoretically) exact t ra jectory we record each xn to a finite accuracy: xa ~ mn. 
For a finite partition each mn can be chosen to be integer. Hence, the whole 
infinite symbolic t rajectory 

(7 ~ . . .m-n. . .m-lmoml. . .mn . . . .  S(x0;  T), (2.6) 

can be represented by a single number a, which is generally irrational and which 
is some function of the exact initial conditions. The symbolic trajectory may be 
also called a coarse-grained trajectory. I remind you that  the latter is a projection 
of (not substitution for) the exact t rajectory to represent in compact form the 
global dynamical behavior without unimportant  microdetails. 

A remarkable property of chaotic dynamics is that  the set of its symbolic 
trajectories is complete; that  is, it actually contains all possible sequences (2.6). 
Apparently, this is related to continuity of function S(x0)  (2.6). On the contrary, 
for a regular motion this function is everywhere discontinuous. 

In a similar way the coarse-grained phase density f (mn,  t) is introduced, in 
addition to the exact, or fine-grained density, which is also a projection of the 
latter on to some partition of the phase space. 

The coarse-grained density represents the global dynamical behavior, partic- 
ularly the most important  process of statistical relaxation, for chaotic motion, 
to some steady state fs(mn) (statistical equilibrium) independent of the initial 
f0(x) if the steady state is stable. Otherwise, synergetics comes into play giving 
rise to a secondary dynamics. As the relaxation is an aperiodic process the spec- 
t rum of chaotic motion is continuous, which is another obstacle for the theory 
of quantum chaos (Section 3). 

Relaxation is one of the characteristic properties of statistical behavior. An- 
other is fluctuation. Chaotic motion is a generator of noise which is purely intrin- 
sic by definition of the dynamical system. Such noise is a particular manifestation 
of the complicated dynamics as represented by the symbolic trajectories or by 
the difference 

f (x ,  t) - f ( m ~ ,  t) -- f (x ,  t). (2.7) 

The relaxation f --~ fs, apparently asymmetric with respect to time reversal 
t --* - t ,  gave rise to a long-standing misconception of the notorious time arrow. 
Even now some very complicated mathematical constructions are still being 
erected (see, e.g., Misra et al. (1979), Goldstein et al. (1981)) in at tempts to 
extract  somehow statistical irreversibility from the reversible mechanics. In the 
theory of dynamical chaos there is no such problem. The answer turns out to be 
conceptual rather than physical: one should separate two similar but different 



16 Boris Chirikov 

notions, reversibility and recurrency. The exact density f(x,  t) is always t ime-  
reversible but nonrecurrent  for chaotic motion; that is, it will never come back 
to the initial f0(x) in both directions of  t ime t --~ +co. In other words, the 
relaxation, also present in f ,  is time-symmetric. The projection of f ,  coarse- 
grained f ,  which is both nonrecurrent and irreversible, emphasizes nonrecurrency 
of the exact solution. The apparent violation of the statistical relaxation upon 
time reversal, as described by the exact f(x,  t), represents in fact the growth 
of a big fluctuation which will eventually be followed by the same relaxation 
in the opposite direction of time. This apparently surprising symmetry of the 
statistical behavior was discovered long ago by Kolmogorov (1937). One can say 
that instead of an imagionary time arrow there exists a process arrow pointing 
always to the steady state. The following simple example would help, perhaps, 
to overcome this conceptual difficulty. Consider the hyperbolic one-dimensional 
(1D) motion: 

x( t )  = a .  exp (At)  + b. exp ( - A t ) ,  (2.8) 

which is obviously time-reversible yet remains unstable in both directions of time 
(t ~ 4-oo). Besides its immediate appeal, this example is closely related to the 
mechanism of chaos which is the motion instability. 

2.3 A Few Phys ica l  Examples  of  Low-Dimensional  Chaos  

In this paper I restrict myself to finite-dimensional systems where the peculiar- 
ities of dynamical chaos are most clear (see Section 3.2 for some brief remarks 
on infinite systems). Consider now a few examples of chaos in minimal dimen- 
sionality. 

Bil l iards (2 degrees of freedom). The ball motion here is chaotic for almost 
any shape of the boundary except special cases like circle, ellipse, rectangle and 
some other (see, e.g., Lichtenberg and Lieberman (1992), Kornfeld et al. (1982), 
Katok and Hasselblatt (1994)). However, the ergodicity (on the energy surface) is 
only known for singular boundaries. If the latter is smooth enough the structure 
of motion becomes a very complicated admixture of chaotic and regular domains 
of various sizes (the so-called divided phase space). Another version of billiards 
is the wave cavity in the geometric optics approximation. This provides a helpful 
bridge between classical and quantum chaos. 

P e r t u r b e d  Keple r  mo t ion  is a particular case of the famous 3-body prob- 
lem. Now we understand why it has not been solved since Newton: chaos is gen- 
erally present in such a system. One particular example is the motion of comet 
Halley perturbed by Jupiter which was found to be chaotic with an estimated 
life time in the Solar system of the order of 10 Myrs (Chirikov and Vecheslavov 
(1989); 2 degrees of freedom in the model used, divided phase space). 

Another example is a new, diffusive, mechanism of ionization of the Rydberg 
(highly excited) hydrogen atom in the external monochromatic electric field. It 
was discovered in laboratory experiments (Bayfield and Koch (1974)) and was 
explained by dynamical chaos in a classical approximation (Delone et al. (1983)). 
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In this system a given field plays the role of the third body. The simplest model 
of the diffusive photoelectric effect has 1.5 degrees of freedom (1D Kepler motion 
and the external periodic perturbation), and is also characterized by a divided 
phase space. 

Budke r ' s  problem:  charged particle confinement in an adiabatic magnetic 
trap (Chirikov (1987)). A simple model of two freedoms (axisymmetric magnetic 
field) is described by the Hamiltonian: 

p2 (1 + x 2) y2 
g = - -  + (2.9) 

2 2 

Here magnetic field B = ~ ;  p2 = 52 + y2; x describes the motion along 
magnetic line, and y does so accross the line (a projection of Larmor's rotation). 
At small pitch angles /3 ~ ly/2t the motion is chaotic with the chaos border 
being at roughly 

1 
p ~ I ln/3] (2.10) 

and being very complicated, so-called critical, structure (Section 2.5). 
M a t i n y a n ' s  problem:  internal dynamics of the Yang-Mills (gauge) fields in 

classical approximation (Matinyan (1979), Matinyan (1981)). Surprisingly, this 
completely different physical system can be also represented by Hamiltonian 
(2.9) with a symmetrized 'potential energy': 

U = (1 + x 2)y2 + (1 + y2)x 2 (2.11) 
2 

Dynamics is always chaotic with a divided phase space similar to model (2.9) 
(Chirikov and Shepelyansky (1982)). Model (2.11) describes the so-called massive 
gauge field; that is, one with the quanta of nonzero mass. The massless field 
corresponds to the 'potential energy' 

x 2 y2 
U - (2.12) 

2 

and looks ergodic in numerical experiments. 

2.4 Ins tab i l i ty  and  Chaos  

Local instability of motion responsible for a very complicated dynamical behavior 
is described by the linearized equations: 

du 0v(x0(t), t) 
(2.13) ~ U "  

dt Ox 

Here x0 ( t )  is a reference trajectory satisfying (2.1), and u = x( t )  - x0 ( t )  is the 
deviation of a close trajectory x(t). On average, the solution of (2.13) has the 
form 

[u] ,-~ exp (At), (2.14) 



18 Boris Chirikov 

where A is Lyapunov ' s  exponent.  The motion is (exponentially) unstable if A > 0. 
In the Hamiltonian system of N degrees of freedom there are 2N Lyapunov's 
exponents satisfying the condition ~ A = 0. The partial sum of all positive 
exponents A+ > 0, 

h = A+ (2.15) 

is called the (dynamical) metr i c  entropy. Notice that  it has the dimensions of 
frequency and characterises the instability rate. 

The motion instability is only a necessary but not sufficient condition for 
chaos. Another important  condition is boundedness of the motion, or its oscilla- 
tory (in a broad sense) character. The chaos is produced by the combination of 
these two conditions (also called stretching and folding). Let us again consider 
an elementary example of a 1D map 

x,~+l = 2xn rood 1, (2.16) 

where operation rood 1 restricts (folds) x to the interval (0,1). This is not a 
Hamiltonian system but it can be interpreted as a 'half '  of that; namely, as the 
dynamics of the oscillation phase. This motion is unstable with A = In 2 because 
the linearized equation is the same except for the fractional part (rood 1). The 
explicit solution for both reads 

Un ---- 2 n UO, 

Xn = 2 nx0 mod 1. (2.17) 

The first (linearized) motion is unbounded, like Hamiltonian hyperbolic motion, 
(2.8) and is perfectly regular. The second one is not only unstable but  also 
chaotic just because of the additional operation mod 1, which makes the motion 
bounded, and which mixes up the points within a finite interval. 

We may look at this example from a different viewpoint. Let us express the 
initial x0 in the binary code as the sequence of two symbols, 0 and 1, and let 
us make the parti t ion of the unit x interval also in two equal halves marked by 
the same symbols. Then, the symbolic trajectory will simply repeat x0; tha t  is, 
(2.6) takes the form 

a = x0. (2.18) 

It  implies that ,  as time goes on, the global motion will eventually depend on ever- 
diminishing details of the initial conditions. In other words, when we formally 
fix the exact  xo we 'supply' the system with infinite complexity, which arises due 
to the strong motion instability. Still another interpretation is tha t  the exact 
x0 is the source of in tr ins ic  noise amplified by the instability. For this noise to 
be s ta t ionary  the string of x0 digits has to be infinite, which is only possible in 
cont inuous  phase space. 

A nontrivial part of this picture of chaos is that  the instability must be ex- 
ponent ia l  because a power-law instability is insufficient for chaos. For example, 
the linear instability (lul ~ t) is a generic property of perfectly regular mo- 
tion of the completely integrable system whose motion equations are nonl inear  
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and, hence, whose oscillation frequencies depend on the initial conditions (Born 
(1958), Casati et al. (1980)). The character of motion for a faster instability 
([u[ ~ t ~, a > 1) is unknown. 

On the other hand, the exponential instability (h > 0) is not invariant with 
respect to the change of time variable (Casati and Chirikov (1995a), Batter- 
man (these proceedings); in this respect the only invariant statistical property 
is ergodicity, Kornfeld et al. (1982), Katok and Hasselblatt (1994)). A possible 
resolution of this difficulty is that  the proper characteristic of motion instability, 
important for dynamical chaos, should be taken with respect to the oscillation 
phases whose dynamics determines the nature of motion. It implies that  the 
proper time variable must change proportionally with the phases so that  the 
oscillations become stationary (Casati and Chirikov (1995a)). A simple exam- 
ple is harmonic oscillation with frequency w recorded at the instances of time 
tn = 2~t0. Then, oscillation phase x = wt/27r obeys map (2.16), which is chaotic. 
Clearly, the origin of chaos here is not in the dynamical system but in the record- 
ing procedure (random to). Now, if w is a parameter (linear oscillator), then the 
oscillation is exponentially unstable (in new time n) but only with respect to 
the change of parameter w, not of the initial x0 (x --~ x + x0). In a slightly 
'camouflaged' way, essentially the same effect was considered by Bliimel (1994) 
with far-reaching conclusions on quantum chaos (Section 3.2). 

Rigorous results concerning the relation between instability and chaos are 
concentrated in the Alekseev-Brudno theorem (see Alekseev and Yakobson (1981), 
Bat terman (these proceedings), White.(1993)), which states that  the complexity 
per unit time of almost any symbolic trajectory is asymptotically equal to the 
metric entropy: 

C(t) (2.19) h,  Itl oo. 
Itl 

Here C(t) is the so-called algorithmic complexity, or in more familiar terms, the 
information associated with a trajectory segment of length Itl. 

The transition time from dynamical to statistical behavior according to (2.19) 
depends on the partition of the phase space, namely, on the size of a cell #, which 
is inversely proportional to the biggest integer M _> rnn in symbolic trajec- 
tory (2.6). The transition is controlled by the randomness parameter (Chirikov 
(1985)): 

h Itl Itl (2.20) 
r = ln----M ~ t--r-' 

where tr is the dynamical time scale. As both Itl, M ~ c~ we have a somewhat 
confusing situation, typical in the theory of dynamical chaos, in which two limits 
do not commute: 

M ~ ~ , l t l  -~ c~ r Itl --* c ~ , M  --+ oo. (2.21) 

For the left order (M --* ~ first) parameter r -~ 0, and we have temporary deter- 
minism (Itl <t~),  while for the right order r --~ oo, and we arrive at asymptotic 
randomness (Itl > t~). 
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Instead of the above double limit we may consider the conditional limit 

[t[, M ~ ~ ,  r = const, (2.22) 

which is also a useful method in the theory of chaotic processes. Particularly 
for r < 1, strong dynamical correlations persist in a symbolic trajectory, which 
allows for the prediction of trajectory from a finite-accuracy observation. This 
is no longer the case for r > 1 when only a statistical description is possible. 
Nevertheless, the motion equations can still be used to completely derive all the 
statistical properties without any ad hoc hypotheses. Here the exact trajectory 
does exist as well but becomes the Kantian thing-in-itself, which can be neither 
predicted nor reproduced in any other way. 

The mathematical origin of this peculiar property goes back to the famous 
G6del theorem (GSdel (1931)), which states (in a modern formulation) that  
most theorems in a given mathematical system are unprovable, and which forms 
the basis of contemporary mathematical logic (see Chaitin (1987) for a detailed 
explanation and interesting applications of this relatively less-known mathemati- 
cal achievement). A particular corollary, directly related to symbolic trajectories 
(2.6), is that  almost all real numbers are uncomputable by any finite algorithm. 
Besides rational numbers some irrationals like ~r or e are also known to be com- 
putable. Hence, their total complexity, e.g., C(~r), is finite, and the complexity 
per digit is zero (cf. (2.19)). 

The main object of my discussion here, as well as of the whole physics, is a 
closed system that  requires neglection of the external perturbations. However, 
in case of strong motion instability this is no longer possible, at least dynam- 
ically. What  is the impact of a weak perturbation on the statistical properties 
of a chaotic system? The rigorous answer was given by the robustness theorem 
due to Anosov (1962): not only do statistical properties remain unchanged but, 
moreover, the trajectories get only slightly deformed providing (and due to) the 
same strong motion instability. The explanation of this striking peculiarity is 
tha t  the trajectories are simply transposed and, moreover, the less the stronger 
is instability. 

In conclusion let me make a very general remark, far beyond the particular 
problem of chaotic dynamics. According to the Alekseev-Brudno theorem (2.19) 
the source of stationary (new) information is always chaotic. Assuming farther 
that  any creative activity, science including, is such a source we come to an 
interesting conclusion that  any such activity has to be (partly!) chaotic. This is 
the creative side of chaos. 

2.5 S ta t i s t i ca l  C o m p l e x i t y  

The theory of dynamical chaos does not need any statistical hypotheses, nor 
does it allow for arbitrary ones. Everything is to be deduced from the dynamical 
equations. Sometimes the statistical properties turn out to be quite simple and 
familiar (Lichtenberg and Lieberman (1992), Chirikov (1979)). This is usually 
the case if the chaotic motion is also ergodic (on the energy surface), like in some 
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billiards and other simple models (Section 2.3). However, quite often, and even 
typically for a few-freedom chaos, the phase space is divided, and the chaotic 
component of the motion has a very complicated structure. 

One beautiful example is the so-called Arnold diffusion driven by a weak 
(c -~ 0) perturbation of a completely integrable system with N > 2 degrees of 
freedom (Lichtenberg and Lieberman (1992), Chirikov (1979)). The phase space 
of such a system is pierced by the everywhere-dense set of nonlinear resonances 

ran" w~ ~ O, (2.23) 
n 

0 where mn are integers, and wn are the unperturbed frequences depending on 
dynamical variables (usually actions I). Each resonance is surrounded by a sep- 
aratrix, the singular highly unstable trajectory with zero motion frequency. As 
a result, no matter how weak the perturbation (c --~ 0) is, a narrow chaotic 
layer always arises around the separatrix. The whole set of chaotic layers is ev- 
erywhere dense as is the set of resonances. For N > 2 the layers form a united 
connected chaotic component of the motion supporting the diffusion over the 
whole energy surface. Both the total measure of the chaotic component and the 
rate of Arnold diffusion are exponentially small (--~ exp ( -C /v~) )  and can be 
neglected in most cases; hence the term KAM integrability (Chirikov and Vech- 
eslavov (1990)) for such a structure (after Kolmogorov, Arnold and Moser who 
rigorously analysed some features of this structure). This quasi-integrability has 
the nature and quality of adiabatic invariance. However, on a very big time scale 
this weak but universal instability may essentially affect the motion. 

One notable example is celestial mechanics, particularly the stability of the 
Solar system (Wisdom (1987) Laskar (1989), Laskar (1990), Laskar (1994)). Sur- 
prisingly, this 'cradle' of classical determinism and the exemplar case of dynami- 
cal behavior proves to be unstable and chaotic. The instability time of the Solar 
system was found to be rather long (A -1 ,,~ 10 Myrs), and its life time is still 
many orders of magnitude larger. It has not been estimated as yet, and might 
well exceed the cosmological time ~,- 10 Byrs. 

Another interesting example of complicated statistics is the so-called critical 
structure near the chaos border which is a necessary element of divided phase 
space (Chirikov (1991)). The critical structure is a hierarchy of chaotic and regu- 
lar domains on ever decreasing spatial and frequency scales. It can be universally 
described in terms of the renorrnalization group, which proved to be so efficient 
in other branches of theoretical physics. In turn, the renormMization group may 
be considered as an abstract dynamical system that  describes the variation of 
the whole motion structure, for the original dynamical system, in dependence 
of its spatial and temporal scale. Logarithm of the latter plays a role of 'time' 
(renormtime) in that  renormdynamics. At the chaos border the latter is deter- 
mined by the motion frequencies. The simplest renormdynamics is a periodic 
variation of the structure or, for a renorm-map, the invariance of the structure 
with respect to the scale (MacKay (1983)). Surprisingly, this scale invariance 
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includes the chaotic trajectories as well. The opposite limit--renormchaos--is 
also possible, and was found in several models (see Chirikov (1991)). 

Even though the critical structure occupies a very narrow strip along the 
chaos border it may qualitatively change the statistical properties of the whole 
chaotic component. This is because a chaotic trajectory unavoidably enters from 
time to time the critical region and 'sticks' there for a time that is longer the 
closer it comes to the chaos border. The sticking results in a slow power-law 
correlation decay for large time, in a singular motion spectrum for low frequency, 
and even in the superdiffusion when the phase-density dispersion a 2 ,~ t ~ (~ > 1) 
grows faster than time (Chirikov (1987), Chirikov (1991)). 

3 S c i e n t i f i c  R e s u l t s  a n d  C o n c e p t u a l  I m p l i c a t i o n s :  

Q u a n t u m  C h a o s  

The mathematical theory of dynamical chaos--ergodic theory--is self-consistent. 
However, this is not the case for the physical theory unless we accept the philos- 
ophy of the two separate mechanics: classical and quantum. Even though such a 
view cannot be excluded at the moment it has a profound difficulty concerning 
the border between the two. Nor is it necessary according to recent intensive 
studies of quantum dynamics. Then, we have to understand the mechanics of 
dynamical chaos from a quantum point of view. Our guiding star will be the 
correspondence principle which requires the complete quantum theory of any 
classical phenomenon, in the quasiclassical limit, assuming that the whole clas- 
sical mechanics is but a special part (the limiting case) of the currently most 
general and fundamental physical theory: quantum mechanics. Now it would be 
more correct to speek about quantum field theory but here I restrict myself to 
finite-dimensional systems only (see Sections 3.2 and 3.4). 

3.1 The  Correspondence  Pr inciple  

In attempts to build up the quantum theory of dynamical chaos we immediately 
encounter a number of apparently very deep contradictions between the well- 
established properties of classical dynamical chaos and the most fundamental 
principles of quantum mechanics. 

To begin with, quantum mechanics is commonly understood as a funda- 
mentally statistical theory, which seems to imply always some quantum chaos, 
independent of the behavior in the classical limit. This is certainly true but in 
some restricted sense only. A novel developement here is the isolation of this fun- 
damental quantum randomness as solely the characteristic of the very specific 
quantum process, measurement, and even as the particular part of that-- the so- 
called C-collapse which, indeed, has so far no dynamical description (see Section 
4 for further discussion of this problem). 

No doubt, quantum measurement is absolutely necessary for the study of the 
microworld by us, the macroscopic human beings. Yet, the measurement is, in 
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a sense, foreign to the proper microworld that might (and should) be described 
separately from the former. Explicitly (Casati and Chirikov (1995a)) or, more 
often, implicitly such a philosophy has become common in studies of chaos but 
not yet beyond this field of research (see, e.g., Shimony (1994)). 

This approach allows us to single out the dynamical part of quantum mechan- 
ics as represented by a specific dynamical variable r in Hilbert space, satisfying 
some deterministic equation of motion, e.g., the Schr6dinger equation. The more 
difficult and vague statistical part is left for a better time. Thus, we temporarily 
bypass (not resolve!) the first serious difficulty in the theory of quantum chaos 
(see also Section 4). The separation of the first part of quantum dynamics, which 
is very natural from a mathematical viewpoint, was first introduced and empha- 
sized by Schr6dinger, who, however, certainly underestimated the importance of 
the second part in physics. 

However, another principal difficulty arises. As is well known, the energy (and 
frequency) spectrum of any quantum motion bounded in phase space is always 
discrete. And this is not the property of a particular equation but rather a con- 
sequence of the fundamental quantum principle the discreteness of phase space 
itself, or in a more formal language, the noncommutative geometry of quantum 
phase space. Indeed, according to another fundamental quantum principle the 
uncertainty principle a single quantum state cannot occupy the phase space 
volume VI < h N ~ 1 [in what follows I set h = 1, particularly, not to confuse it 
with metric entropy h (2.15)]. Hence, the motion bounded in a domain of volume 
V is represented by V/V1 ~ V eigenstates, a property even stronger than the 
general discrete spectrum (almost periodic motion). 

According to the existing ergodic theory such a motion is considered to be 
regular, which is something opposite to the known chaotic motion with a continu- 
ous spectrum and exponential instability (Section 2.2), again independent of the 
classical behavior. This seems to never imply any chaos or, to be more precise, 
any classical-like chaos as defined in the ergodic theory. Meanwhile, the corre- 
spondence principle requires conditional chaos related to the nature of motion 
in the classical limit. 

3.2 Pseudochaos  

Now the principal question to be answered reads: where is the expected quantum 
chaos in the ergodic theory? Our answer to this question (Chirikov et al. (1981), 
Chirikov et al. (1988); not commonly accepted as yet) was concluded from a 
simple observation (principally well known but never comprehended enough) 
that the sharp border between the discrete and continuous spectrum is physi- 
cally meaningful in the limit Itl --~ c~ only, the condition actually assumed in 
the ergodic theory. Hence, to understand quantum chaos the existing ergodic 
theory needs modification by the introduction of a new 'dimension', the time. In 
other words, a new and central problem in the ergodic theory is the finite-time 
statistical properties of a dynamical system, both quantum as well as classical 
(Section 3.4). 
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Within a finite time the discrete spectrum is dynamically equivalent to the 
continuous one, thus providing much stronger statistical properties of the motion 
than was (and still is) expected in the ergodic theory for the case of a discrete 
spectrum. In short, motion with a discrete spectrum may exhibit all the statisti- 
cal properties of classical chaos but only on some finite time scales (Section 3.3). 
Thus, the conception of a time scale becomes fundamental in our theory of quan- 
tum chaos (Chirikov et al. (1981), Chirikov et al. (1988)). This is certainly a new 
dynamical phenomenon, related but not identical at all to classical dynamical 
chaos. We call it pseudochaos; the term pseudo is used to emphasize the difference 
from the asymptotic (in time) chaos in the ergodic theory. Yet, from the physical 
point of view, we accept here that  the latter, strictly speaking, does not exist 
in Nature. So, in the common philosophy of the universal quantum mechanics 
pseudochaos is the only true dynamical chaos (cf. the term 'pseudoeuclidian ge- 
ometry'  in special relativity). Asymptotic chaos is but a limiting pattern which 
is, nevertheless, important both in theory, to compare with the real chaos, and 
in applications, as a very good approximation in a macroscopic domain, as is 
the whole classical mechanics. Ford describes the former mathematical chaos as 
contrasted to the real physical chaos in quantum mechanics (Ford (1994)). An- 
other curious but impressive term is artificial reality (Kaneko and Tsuda (1994)), 
which is, of course, a self-contradictory notion reflecting, particularly, confusion 
in the interpretation of surprising phenomena such as chaos. 

The statistical properties of the discrete-spectrum motion are not completely 
new subjects of research, such research goes back to the time of intensive studies 
in the mathematical foundations of statistical mechanics before dynamical chaos 
was discovered or, better to say, understood (see, e.g., Kac (1959)). We call this 
early stage of the theory traditional statistical mechanics (TSM). It is equally 
applicable to both classical as well as quantum systems. For the problem under 
consideration here, one of the most important rigorous results with far-reaching 
consequences was the statistical independence of oscillations with incommensu- 
rable (linearly independent) frequencies w,~, such that  the only solution of the 
resonance equation, 

N 

= 0, (3.1)  
n 

in integers is m,~ ------ 0 for all n. This is a generic property of the real numbers; 
that  is, the resonant frequencies (3.1) form a set of zero Lebesgue measure. 
If we define now Yn = cos (oant), the statistical independence of Yn means that  
trajectory Yn (t) is ergodic in N-cube ]y~ ] < 1. This is a consequence of ergodicity 
of the phase trajectory r = w~t m o d  2r  in N-cube ]r _< ~r. 

Statistical independence is a basic property of a set to which the probabil- 
ity theory is to be applied. Particularly, the sum of statistically independent 
quantities, 

N 

x(t)  -- A n . c o s  t + (3.2) 
n 
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which is motion with a discrete spectrum, is the main object of this theory. How- 
ever, the familiar statistical properties such as Gaussian fluctuations, postulated 
(directly or indirectly) in TSM, are reached in the limit N --~ oo only, which is 
called the thermodynamical limit. In TSM this limit corresponds to infinite- 
dimensional models (Kornfeld et al. (1982), Katok and Hasselblatt (1994)), 
which provide a very good approximation for macroscopic systems, both classical 
and quantal. 

However, what is really necessary for good statistical properties of sum (3.2) 
is a large number of frequencies N~ --~ c~, which makes the discrete spectrum 
continuous (in the limit). In TSM the latter condition is satisfied by setting 
N~ = N. The same holds true for quantum fields which are infinite-dimensional. 
In quantum mechanics another mechanism, independent of N,  works in the 
quasiclassical region q >> 1 where q = I / h  =- I is some big quantum parameter,  
e.g., quantum number, and I stands for a characteristic action of the system. 
Indeed, if the quantum motion (3.2) [with r  instead of x(t)] is determined by 
many (~  q) eigenstates we can set N~ = q independent of N. The actual number 
of terms in expansion (3.2) depends, of course, on a particular state r  under 
consideration. For example, if it is just an eigenstate the sum reduces to a single 
term. This corresponds to the special peculiar trajectories of classical chaotic 
motion whose total  measure is zero. Similarly, in quantum mechanics N~ ~ q 
for most states if the system is classically chaotic. This important  condition 
was found to be certainly sufficient for good quantum statistical properties (see 
Chirikov et al. (1981), Chirikov et al. (1988) and Section 3.3 below). Whether  it 
is also the necessary condition remains as yet unclear. 

Thus, with respect to the mechanism of the quantum chaos we essentially 
come back to TSM with an exchange of the number of freedoms N for the 
quantum parameter q. However, in quantum mechanics we are not interested, 
unlike in TSM, in the limit q --* ec, which is simply the classical mechanics. 
Here, the central problem is the statistical properties for large but finite q. This 
problem does not exist in TSM describing macroscopic systems. Thus, with an 
old mechanism the new phenomena were understood in quantum mechanics. 

3.3 C h a r a c t e r i s t i c  T i m e  Scales  in Q u a n t u m  C h a o s  

The existing ergodic theory is asymptotic in time, and hence contains no t ime 
scales at all. There are two reasons for this. One is technical: it is much simplier 
to derive the asymptotic relations than to obtain rigorous finite-time estimates. 
Another reason is more profound. All statements in the ergodic theory hold true 
up to measure zero, tha t  is, excluding some peculiar nongeneric sets of zero 
measure. Even this minimal imperfection of the theory did not seem completely 
satisfactory but  has been 'swallowed' eventually and is now commonly tolerated 
even among mathematicians, to say nothing about physicists. In a finite-time 
theory all these exceptions acquire a small but finite measure which would be 
already 'unbearable'  (for mathematicians). Yet, there is a standard mathematical  
trick, to be discussed below, for avoiding both these difficulties. 



26 Boris Chirikov 

The most important  time scale tn  in quantum chaos is given by the general 
estimate 

l n tR  ~,, lnq ,  tR ~ qa ~ PO <-- PH, (3.3) 

where a ~ 1 is a system-dependent parameter. This is called the relaxation t ime 
scale refering to one of the principal properties of chaos: statistical relaxation to 
some steady state (statistical equilibrium). The physical meaning of this scale is 
principally simple and is directly related to the fundamental uncertainty princi- 
ple (A t .  A E  ,-, 1) as implemented in the second equation in (3.3), where PH is 
the ful l  average energy level density (also called the Heisenberg time). For t < tn  
the discrete spectrum is not resolved, and the statistical relaxation follows the 
classical (limiting) behavior. This is just the 'gap' in the ergodic theory (supple- 
mented with the additional, time, dimension) where pseudochaos, particularly 
quantum chaos, dwells. A more accurate estimate relates tR to a part Po of the 
level density. This is the density of the so-called operative eigenstates; tha t  is, 
only those that  are actually present in a particular quantum state r and actually 
control its dynamics. 

The formal trick mentioned above is to consider not the finite-time relations 
we really need but rather the special conditional limit (cf. (2.22)): 

t 
t, q --* oo ~" - - const  (3.4) 

tR(q) 
Quanti ty  T is a new rescaled time which is, of course, nonphysical but  very help- 
ful technically. The double limit (3.4) (unlike the single one q --~ (x~) is not the 
classical mechanics which holds true, in this representation, for T < 1 and with 
respect to the statistical relaxation only. For T > 1 the behavior becomes essen- 
tially quantum (even in the limit q -~ cx~ !) and is called nowadays mesoscopic 
phenomena.  Particularly, the quantum steady state is quite different from the 
classical statistical equilibrium in that  the former may be localized (under certain 
conditions) that  is nonergodic in spite of classical ergodicity. 

Another  important difference is in f luctuations, which are also a characteristic 
proper ty  of chaotic behavior. In comparison with classical mechanics quantum 
r  plays, in this respect, an intermediate role between the classical t ra jectory 
(exact or symbolic) with big relative fluctuations ~ 1 and the coarse-grained 
classical phase space density with no fluctuations at all. Unlike both  the fluc- 
tuat ions of ~b(t) are ,-~ N ~  1/2, which are another manifistation of statistical 
independence, or decoherence, of even pure quantum state (3.2) in case of quan- 
tum chaos. In other words, chaotic ~(t)  represents statistically a f inite ensemble 
of ~ N~ systems even though formally r  describes a single system. Quantum 
fluctuations clearly demonstrate also the difference between physical t ime t and 
auxiliary variable T: in the double limit (t, q --~ cx~) the fluctuations vanish and 
one needs a new trick to recover them. 

The  relaxation time scale should be distinguished from the Poincard recur- 
rence t ime tp  >> tn ,  which is typically much longer, and which sharply increases 
with a decrease in the recurrence domain. Time scale tg  characterizes big fluc- 
tuat ions (for both the classical trajectory, but  not the phase space density, and 
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quantum r of which recurrences is a particular case. Unlike this, tR describes 
the average relaxation process. 

Stronger statistical properties than relaxation and fluctuations are related in 
the ergodic theory to the exponential instability of motion. Their importance 
for statistical mechanics is not completely clear. Nevertheless, in accordance 
with the correspondence principle, those stronger properties are also present in 
quantum chaos as well, but on a much shorter time scale, 

lnq (3.5) t r  ~ --~-- ,  

where h is classical metric entropy (2.15). This time scale was discovered and 
partly explained by Berman and Zaslavsky (1978) (see also Chirikov et al. (1981), 
Chirikov et al. (1988), Casati and Chirikov (1995a)). Being very short, tr grows 
indefinitely as q --* oo. 

The simplest example of quantum dynamics on this scale is the stretch- 
ing/squeezing of an initially narrow wave packet, with the conservation of the 
phase space volume like in classical mechanics, followed by the packet inflation 
(increasing phase space volume), and eventually by the complete destruction of 
the packet, its splitting into many irregular subpackets (Casati and Chirikov 
(1995a)). 

In a quasiclassical region (q >> 1), tr << tR (3.3). This leads to an interesting 
conclusion that  the quantum diffusion and relaxation are dynamically stable 
contrary to the classical behavior. It suggests, in turn, that  the motion instability 
is not important during statistical relaxation. However, the foregoing correlation 
decay on a short time scale t~ is crucial for the statistical properties of quantum 
dynamics. 

3,4 E x a m p l e s  o f  P s e u d o c h a o s  in Class ical  M e c h a n i c s  

Pseudochaos is a new generic dynamical phenomenon missed in the ergodic 
theory. No doubt, the most important particular case of pseudochaos is quantum 
chaos. Nevertheless, pseudochaos occurs in classical mechanics as well. Here are 
a few examples of classical pseudochaos, which may help us to understand the 
physical nature of quantum chaos, my primary goal in this paper. Besides, this 
unveils new features of classical dynamics as well. 

L i ne a r  waves  is the example of pseudochaos (see, e.g., Chirikov (1992)) that  
is closest to quantum mechanics. I remind you that  here only a part of quantum 
dynamics is discussed, the one described, e.g., by the SchrSdinger equation, 
which is a linear wave equation. For this reason quantum chaos is sometimes 
called wave chaos (Seba (1990)). Classical electromagnetic waves are used in 
laboratory experiments as a physical model for quantum chaos (StSckmann and 
Stein (1990), Weidenmiiller et al. (1992)). The 'classical' limit corresponds here 
to the geometrical 'optics', and the 'quantum' parameter q -- L/A is the ratio of 
a characteristic size L of the system to the wave length A. 
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The  linear oscillator (many-dimensional) is a particular case of waves 
(without dispersion). A broad class of quantum systems can be reduced to this 
model (Eckhardt (1988)). Statistical properties of linear oscillators, particularly 
in the thermodynamic limit (N -~ oc), were studied by Bogolyubov (1945) in the 
framework of TSM. On the other hand, the theory of quantum chaos suggests 
richer behavior for a large but finite N, particularly, the characteristic time scales 
for the harmonic oscillator motion (Chirikov (1986)) and the number of degrees 
of freedom N playing the role of the 'quantum' parameter. 

Comple te ly  integrable nonl inear  sys tems  also reveal pseudochaotic be- 
havior. An example of statistical relaxation in the Toda lattice had been pre- 
sented in Ford et al. (1973) much before the problem of quantum chaos arose. 
Moreover, the strongest statistical properties in the limit N -~ co, including one 
equivalent to the exponential instability (the so-called K-property) were rigor- 
ously proved just for the (infinite) completely integrable systems (see Kornfeld 
et al. (1982), Satok and Uasselblatt (1994)). 

The  digital  compute r  is a very specific classical dynamical system whose 
dynamics is extremely important in view of the ever increasing application in 
numerical experiments covering now all branches of science and beyond. The 
computer is an 'overquantized' system in that any quantity here is discrete, 
whereas in quantum mechanics only the product of two conjugated variables is. 
The 'quantum' parameter here is q = M, which is the largest computer integer, 
and the short time scale (3.5) is t~ ~ in M, which is the number of digits in 
the computer word (Chirikov et al. (1981), Chirikov et al. (1988)). Owing to 
the discreteness, any dynamical trajectory in the computer eventually becomes 
periodic, an effect well known in the theory and practice of the so-called pseudo- 
random number generators. One should take all necessary precautions to exclude 
this computer artifact in numerical experiments. On the mathematical part, the 
periodic approximations in dynamical systems are also studied in ergodic the- 
ory, apparently without any relation to pseudochaos in quantum mechanics or 
computers. 

Computer pseudochaos is the best answer to those who refuse accept the 
quantum chaos as, at least, a kind of chaos, and who still insist that only the 
classical-like (asymptotic) chaos deserves this name, the same chaos that was 
(and is) studied to a large extent just on computers; that is, the chaos inferred 
from a pseudochaosi 

4 Conclusion: Old Challenges and New Hopes 

The discovery and understanding of the new surprising phenomenon--dynamical 
chaos---opened up new horizons in solving many other problems including some 
long-standing ones. Unlike in previous sections, here I can give only a preliminary 
consideration of possible new approaches to such problems, together with some 
plausible conjectures (see also Casati and Chirikov (1995a)). 

Let us begin with the problem directly related to quantum dynamics, namely 
the quantum measurement or, to be more correct, the specific stage of the latter: 
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r This is just the part  of quantum dynamics I bypassed above in the 
report  on scientific results. This part  still remains very vague to the extent 
tha t  there is no common agreement even on the question of whether it is a 
real physical problem or an ill-posed one so that  the Copenhagen interpretation 
of (or convention in) quantum mechanics gives satisfactory answers to all the 
admissible questions. In any event there exists as yet no dynamical description 
of the quantum measurement including C-collapse. The quantum measurement, 
as far as the result is concerned, is fundamentally a random process. However, 
there are good reasons to hope that  this randomness can be interpreted as a 
particular manifestation of dynamical chaos (Cvitanovid et al. (1992)). 

The Copenhagen convention was (and still remains) very important  as a 
phenomenological link between very specific quantum theory and laboratory ex- 
periments. Without  this link studies of the microworld would be simply impos- 
sible. The Copenhagen philosophy perfectly matches the standard experimental 
setup of two measurements: the first one fixes the initial quantum state, and 
the second records the changes in the system. However, it is less clear how to 
deal with natural processes without any man-made measurements that  is with- 
out the notorious observer. Since the beginning of quantum mechanics such a 
question has been considered ill-posed (meaning nasty). However, now there is 
a revival of interest in a deeper insight into this problem (see, e.g., Cvitanovid 
et al. (1992)). Particularly, Gell-Mann and Hartle put a similar question, true, 
in the context of a very specific and global problem-- the  quantum birth of the 
Universe (Gell-Mann and Hartle (1989)). In my understanding, such a question 
arises as well in much simpler problems concerning any natural quantum pro- 
cesses. What  is more important,  the answer from Gell-Mann and Hartle (1989) 
does not seem satisfactory. Essentially, it is the substitution of the automaton 
(information gathering and utilizing system) for the standard human observer. 
Neither seems to be a generic construction in the microworld. 

The theory of quantum chaos allows us to solve, at least (the simpler) half of 
the C-collapse problem. Indeed, the measurement device is by purpose a macro- 
scopic system for which the classical description is a very good approximation. 
In such a system strong chaos with exponential instability is quite possible. The 
chaos in the classical measurment device is not only possible but  unavoidable 
since the measurement system has to be, by purpose again, a highly unstable 
system where a microscopic intervention produces the macroscopic effect. The 
importance of chaos for the quantum measurement is that  it destroys the co- 
herence of the initial pure quantum state to be measured converting it into the 
incoherent mixture. In the present theories of quantum measurement this is de- 
scribed as the effect of external noise (see, e.g., Wheeler and Zureck (1983)). 
True, the noise is sufficient to destroy the quantum coherence, yet it is not nec- 
essary at all. Chaos theory allows us to get rid of the unsatisfactory effect of the 
external noise and to develop a purely dynamical theory for the loss of quan- 
tum coherence. Unfortunately, this is not yet the whole story. If we are satisfied 
with the statistical desciption of quantum dynamics (measurement including) 
then the decoherence is all we need. However, the individual behavior includes 
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the second (main) part of C-collapse: namely, the concentration of r in a single 
state of the original superposition 

r -- ~ an Cn --* Ck, ~ lanl 2 = 1. (4.1) 
n n 

This is the proper C-collapse to be understood. 
Also, it is another challenge to the correspondence principle. For quantum 

mechanics to be universal it must explain as well the very specific classical phe- 
nomenon of the event that does happen and remains for ever in the classical 
records, and is completely foreign to the proper quantum mechanics. It is just 
the effect of ~-collapse. 

All these problems could be resolved by a hypotetical phenomenon of self- 
collapse; that is, the collapse without any 'observer', human or automatic. Un- 
fortunately, it seems that any physical explanation of C-collapse requires some 
changes in the existing quantum mechanics, and this is the main difficulty both 
technical and philosophical. 

Now we come to the even more difficult problem of the causality principle: 
the universal time ordering of the events. This principle has been well confirmed 
by numerous experiments in all branches of physics. It is frequently used in the 
construction of various theories but, to my knowledge, no general relation of 
causality to the rest of physics was ever studied. 

This principle looks like a statistical law (another time arrow), hence a new 
hope to understand the mechanism of causality via dynamical chaos. Yet, it di- 
rectly enters the dynamics as the additional constraint on the interaction and/or 
the solutions of dynamical equations. A well-known and quite general example is 
in keeping the retarded solutions of a wave equation, only discarding advanced 
ones as 'nonphysical'. However, this is generally impossible for a bounded dy- 
namics because of the boundary conditions. Still, causality holds true as well. 

In some simple classical dissipative models, such as a driven damping oscil- 
lator, the dissipation was shown to imply causality (Youla et al. (1959), Dolph 
(1963), Zemanian (1965), Gfittinger (1966), Nussenzveig (1972)). However, such 
results were formulated as the restriction on a class of systems showing causal- 
ity rather than the foundations of the causality principle. Nevertheless, it was 
already some indication of a possible physical connection between dynamical 
causality and statistical behavior. To my knowledge, this connection was never 
studied further. To the contrary, the developement of the theory went the op- 
posite way: taking for granted the causality to deduce all possible consequences, 
particularly various dispersion relations (Nussenzveig (1972)). 

Causality relates two qualitatively different kinds of events: causes and effects. 
The former may be simply the initial conditions of motion, the point missed in 
the above-mentioned examples of the causality-dissipation relation. The initial 
conditions not only formally fix a particular trajectory but also are arbitrary, 
which is, perhaps, the key point in the causality problem. Also, this may shed 
some light on another puzzling peculiarity of all known dynamical laws: they dis- 
cribe the motion up to arbitrary initial conditions only (cf. Weingartner (these 
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proceedings)). It looks like the dynamical laws already include the causality im- 
plicitly even though they do not this explicitly. In any event, something arbi t rary 
suggests chaos is around. 

Again, we arrive at a tangle of interrelated problems. A plausible conjecture 
for how to resolve them might be as follows. An arbitrary cause indicates some 
statistical behavior, while the cause-effect relation points out a dynamical law. 
Then, we may conjecture that  when the cause acts the transition from statistical 
to dynamical behavior occurs, which statistically separates the cause from the 
'past '  and dynamically fixes the effect in the 'future'.  In this imagionary picture 
the 'past '  and 'future' are related not to time but rather to cause and effect, 
respectively. Thus, the causality might be not time ordering (time arrow) but  
cause-effect ordering, or the causality arrow. The latter is very similar to the 
process arrow discussed in Section 2.2. Now, the central point is that  the cause 
is arbi t rary while the effect is not, whatever the time ordering. 

This is, of course, but  a raw guess to be developed, carefully analysed, and 
eventually confirmed or disproved experimentally. 

Also, this picture seems to be closer to the statistical (secondary) dynamics 
[synergetics, or S D D inclusion in (1.1)] rather than to dynamical chaos. Does it 
mean that  the primary physical laws are statistical or, instead, that  the chain of 
inclusions (1.1) is actually a closed ring with a 'feedback' coupling the secondary 
statistics to the primary dynamics? 

We don't  know. 
In all this long lecture I have never given the definition of dynamical chaos, 

either classical or quantal, restricting myself to informal explanations (see Casati 
and Chirikov (1995a) for some current definitions of chaos). In a mathematical  
theory the definition of the main object of the theory precedes the results; in 
physics, expecially in new fields, it is quite often vice versa. First, one studies 
a new phenomenon such as dynamical chaos and only at a later stage, after 
understanding it sufficiently, we t ry  to classify it, to find its proper place in the 
existing theories and eventually to choose the most reasonable definition. This 
time has not yet come. 
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J. Lighthill 
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I enjoyed all parts of this paper, but the part on which I should especially like to 
comment is the part dealing with the history of investigations of chaos in systems 
subject to the Hamiltonian equations of classical mechanics. I believe that this 
history has been described by Professor Chirikov, perhaps through modesty, in a 
way which does not fully bring out the importance of contributions to the study 
of chaos in such systems which were made by Professor Chirikov himself. Those 
classical authors which are cited in the paper, including especially Poincar~, had 
admittedly achieved an understanding of the possibilities of chaotic behaviour 
that may arise in Hamiltonian systems. On the other hand, their attempts at 
rigorous mathematical proof of the properties of such systems came up against 
some very severs difficulties. Necessarily, such proofs were attempted by means 
of perturbation theory, for sufficiently small departures from a regular (periodic- 
orbits) solution. Nevertheless, many formidable obstacles (including the famous 
"small divisors" problem, for example) opposed the development of their argu- 
ments into a "watertight" mathematical proof. Against this background, one of 
the vitally important contributions of the famous "KAM" papers of Kolmogorov 
(1954), Arnold (1963) and Moser (1962) referred to in section 2.5 of Professor 
Chirikov's paper was their success in overcoming all the obstacles, and in achiev- 
ing a first rigorous demonstration, for sufficiently small values of a perturbation 
amplitude, of the properties of such classical systems. 

Even in those regions of parameter space (involving e.g. near-coincidence of 
resonance frequencies) where the difficulties were most formidable, the KAM 
methods produced completely reliable results. As far as chaos was concerned, 
these results demonstrated beyond any doubt that it could arise in such a sys- 
tem. Nevertheless, they showed that regular behaviour of the system was enor- 
mously more common. Indeed, it was only in regions of parameter space whose 
total measure was of smaller order than any algebraic power of a perturba- 
tion amplitude that this regular behaviour was replaced by chaotic behaviour. 
The presence of those "microscopic" gaps in parameter space where chaotic be- 
haviour could be shown to come about was of course of the greatest physical as 
well as mathematical interest. On the other hand, a group of "die-hard" math- 
ematicians who had long argued that behaviour was an essentially unproven 
hypothesis could still claim that the demonstration of its absence except in a 
region of parameter space of such exceedingly small measure had at least iden- 
tified it as just '% rarity". It has been against that background that the 1979 
paper of Professor Chirikov (see Chirikov (1979)) has required to be seen as of 
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the utmost importance. By using computational methods of extreme precision 
to derive accurate numerical solutions for a Hamiltonian system, he was able 
first of all to verify for small amplitudes the transition from regular to chaotic 
behaviour in those extremely narrow regions of parameter space that are pre- 
dicted by the KAM theory. There his methods were deriving identical results to 
those based upon a perturbation-theory approach. Then, he investigated what 
happened to those extremely narrow regions when the computations were carried 
out with progressively increasing perturbation amplitudes. It was above all this 
investigation which convinced the exponents of classical mechanics that chaos is 
not "a mere curiosity" - and, above all, not just "a rarity". On the contrary, as 
the perturbation amplitude increased, there appeared a steep widening of the 
regions of parameter space within which computed solutions exhibited the be- 
haviour characteristic of chaotic systems. With a further increase of amplitude, 
chaotic behaviour from being exceedingly rare had become extremely normal. 
For many systems, furthermore, the computations indicated a transition to glob- 
ally chaotic behaviour, sometimes called global stochasticity. Some other work 
at that time, being carried out independently in the USA by J.M. Greene (see 
Greene (1979)), was leading to rather similar conclusions, which have of course 
been strongly reinforced in many subsequent investigations. Nevertheless, it is 
no exaggeration for the friends of Professor Chirikov to claim, and moreover to 
wish to emphasize on an occasion like this, that it was his work above all which 
led to a full recognition of how, for conservative dynamical systems in classical 
mechanics, chaotic behaviour is the rule rather than the exception. In relation to 
the subject of this Symposium (the relation between knowledge of laws govern- 
ing natural phenomena and the possibilities of prediction of those phenomena) 
this conclusion has, needless to say, proved to be of fundamental importance. 
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of Complex Systems 
Comments on the Report  by B.Chirikov 

G. Nicolis 

Universit6 Libre de Bruxelles, Belgium 

Abst rac t .  In his report Professor Chirikov raises a number of important scientific and 
epistemological issues stemming from recent developments of chaos theory. In this short 
comment I would like to take up three items which I regard of special interest from the 
perspective of the implications of chaos research in different branches of science : 

The status of biological processes with respect to the laws of physics ; 
The status of the statistical description in general; 
The statistical properties of complex systems giving rise to bifurcations and chaos. 

1 Biological processes and the laws of physics 

This point, aIthough present in the very title of the report, is subsequently only 
briefly treated in Section 1. Chirikov insists on the high specificity of the phe- 
nomenon of life. This is certainly true, but in this context it is worth drawing 
attention on the phenomenon of self-oryanization (Nicolis (1977)), whereby indi- 
vidual subunits achieve, through their cooperative interactions, states character- 
ized by new, emergent properties transending the properties of their constitutive 
parts. Self-organization processes are ubiquitous in physics and chemistry, where 
large classes of systems obeying to nonlinear evolution laws and subjected to a 
constraint give rise spontaneously and under well-defined laboratory conditions 
to complex behavior in the form of abrupt transitions, a multiplicity of states, 
periodic or aperiodic oscillations, regular space patterning or spatio-temporal 
chaos. Many of these phenomena are observed in in vitro experiments on bio- 
chemical reactions. They  also present appealing analogies with well-known man- 
ifestations of life such as biological rhythms, regulation at enzymatic level or 
at the level of the immune response, morphogenesis during embryonic develop- 
ment, or propagation of information through the nerve impulse (see, for instance 
Peliti (1991)). This poses the question of genericity and universality of life on a 
new basis and raises a number of concrete and challenging questions for future 
investigations. 

2 Statistical description 

In my view the inclusion of statistical laws into the dynamical ones or vice versa 
(Chirikov's eq. (1.1)) is not the real issue. At the deterministic level of description 
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the evolution laws (Chirikov's eq. (2.1)) 

dx 
d-~ = v(x,  t) (1) 

can be embedded in phase space. Phase space density f obeys then to the Liou- 
ville equation 

of  
- -  = - d i v  v f  = L f  (2) 
Ot 

whose characteristics are, in turn, nothing but eqs. (1). This close correspondence 
of the two descriptions also holds for discrete time dynamical systems for which 
eq. (2) must be replaced by the Frobenius-Perron equation. 

The real separation between deterministic and statistical views starts when 
the eigenvalue problem of/~ (or of the Frobenius-Perron operator t5) is addresed, 
since in this case one must specify the space of functions in which this problem 
is to be embedded. Depending on the smootness of the admissible functions one 
may derive, then, from the statistical description properties that  were not built 
in an obvious manner into the deterministic description. A concrete example will 
be mentioned in Sec. 3 of this comment. 

In many instances there exists an additional motivation for undertaking a 
statistical description. Macroscopic systems are usually coupled to a complex en- 
vironment inflicting on them a variety of perturbations, which in many instances 
can be assimilated to an (external) noise  process. In addition they themselves 
generate spontaneously variablity resembling in many respects to a noise pro- 
cess - the thermodynamic f luc tuat ions .  To account for these phenomena eqs. 
(1) must be augmented and one is led to a Langevin-type dynamics (Nicolis 
(1977), Gardiner (1983)) 

dx 
d-7 = v(x, t) + F(x, t) (3) 

where F is the r a n d o m  force. Eqs (3) have been analyzed in detail in the litera- 
ture in the double limit of weak, white noise. As it turns out, the deterministic 
description is recovered as the most probable path of the full stochastic process. 
In this special sense the stochastic description would therefore appear to contain 
the deterministic one as mentioned briefly by Chirikov in his Sec. 1, although I 
do not see what "synergetics" has to do with this particular point. Still, some 
additional comments are in order : 

�9 Basically fluctuations are nothing but deterministic chaos in the high-dimensional 
(N ,-~ 1023) phase space of a macroscopic system. Eqs. (3) are therefore a 
shortcut to a full-fledged Liouville equation approach. 

�9 In deriving the properties of the random force F use has been made of the de- 
terministic properties, notably through the fluctuation-dissipation theorem 
(Callen and Welton (1951)). 
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3 Statistical properties of complex systems 

In the last years the full solution of the eigenvalue problem of the Liouville 
equation associated to systems giving rise to bifurcations and chaos has been 
achieved. The most transparent case is that  of dissipative systems, for which 
even 1-dimensional dynamics generates complexity resembling the one one is 
accustomed to find in many-body systems of interest in statistical mechanics. A 
simple example is provided by the discrete time chaotic map 

x,~+l = rxT~ (mod 1), r > 1 (4) 

for which a full spectral decomposition of the Frobenius-Perron operator has 
been obtained. As it turns out (Gaspard (1992), Antoniou and Tasaki (1993)): 

�9 for r = 2, the eigenvalues are 

S k = 2  -k k = 0 ,1 ,2 , . . .  (5) 

The spectrum is thus discrete, even though chaos is an aperiodic process. 
This is at variance with the statement made by Chirikov in his Sec. 2.2. 

�9 The right eigenfunctions are the Bernoulli polynomials while the left ones are 
5-functions and derivatives thereof (notice that  P is not self-adjoint here). 

Similar analysis has been carried out for continuous time dynamical systems 
undergoing pitchfork bifurcation. It has been shown that  at the bifurcation point 
the spectrum of the Liouville operator becomes continuous, but remains discrete 
and confined to the negative real axis before and after bifurcation. Furthermore 
the symmetry-breaking character of the pitchfork bifurcation shows up through 
the appearance of degeneracies in the spectrum in the critical and post-critical 
cases (Gaspard et al. (1995)). 

Common to both studies mentioned above is the observation that  the prob- 
abilistic description is stable in the sense that  the probability density is driven 
irreversibly to its invariant form. This is to be contrasted with the instability of 
motion inherent in the deterministic prediction. 

In conlusion the connection between statistical and deterministic descrip- 
tion is quite intricate indeed. For certain (perhaps even for most) types of our 
predictions statistical description is operationally more meaningful, since it re- 
flects the finite precision of measurement process and bypasses the fundamental 
limitations associated with the instability of motion. 
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Discussion of Boris Chirikov s Paper 

Batterman, Chirkov, Noyes, Schurz, Suppes, Weingartner 

Noyes :  I would really like to hear what you have to say about the wave function 
collapse. This is a problem I have thought quite a bit about. I 'd like to know 
what kind of a position you take on it. You did not have much time to mention 
it in your talk so I would like you to say something about it now. 

Chi r ikov :  I actually have no beforehand solution of this problem, I simply see 
that  there is such a problem and it would be interesting to solve it somehow. 
But this is a very subtle problem, a very old one, from the beginning of quan- 
tum mechanics. And so the main question you need to solve for yourself or t ry  
to convince other people is whether this C-collapse is a real physical problem. 
In other words: is it a physical problem or a philosophical problem? You know 
tha t  there is no such problem in the common (Copenhagen) interpretation of 
quantum mechanics. Rather, it is a convention necessary to do real research in 
quantum physics. You need to understand how to relate this r to a result of 
experiment, and how to interpret the experiment and derive a particular fun- 
damental law of physics. In my opinion, I don' t  know an answer of course and 
cannot make any strong argument in support, but nevertheless my opinion is 
tha t  it might be a physical problem. You should distinguish two types of phys- 
ical processes. One is what you have in your laboratory. You have a particular 
device and you fix the initial conditions which is not your immediate physical 
problem. The problem of initial conditions, also very interesting is another part  
of physics because you choose certain initial conditions by the quantum measure- 
ment. Anyway, you make some complete quantum measurement which fixes the 
C-function exactly. Then, to s tudy something you make another measurement, 
and from the statistical results you derive some fundamental law. This is O.K.: 
all you need to know is that  the modulus of the C-function squared is the proba- 
bility of particular results. This was very important  at the beginning of quantum 
mechanics to have a clear idea how to interpret experimental results, and how 
to recalculate from them a fundamental law of quantum interaction. But  you 
may consider a different type of processes, I would say. Something just happens 
around, and nobody is interested to measure what has happened. But  something 
very important  does happen, for example, the first living molecule does appear. 
How would you describe this? It  is not clear. You need this C-collapse with- 
out special measurement in the usual sense. Some physicists, including myself, 
think that  it must be something which might be called the self-collapse that  is 
a collapse without special measurement, something that  from time to time pro- 
duces the event. In the standard quantum mechanics there is no such conception. 
You have probabilities of everything but nothing happens. But many things do 
happen, and the problem is how to understand it from quantum mechanics? It 
seems to me that  we need the mechanism of such a self-collapse, some dynamicM 
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theory of the e-collapse. Again there are two different situations. In many cases 
you are satisfied with the statistical description of events. So, all you need is 
decoherence of the e-function. You begin with a pure state, not a mixture. One 
statistical effect of the e-collapse is in that  you obtain an incoherent mixture 
of probabilities instead of the coherent superposition of probability amplitudes. 
This problem is solved in the theory of dynamical chaos. The principal result 
of this theory - statistical relaxation - means a general decoherence. Even the 
simple diffusion implies already decorrelation and decoherence, otherwise you 
would not have this characteristic linear dependence on time of second moment 
of distribution function. So, principally the problem of quantum decoherence 
is solved. Of course, it might be very difficult technically but principally it is 
solved. What  remains unsolved is if you are not satisfied with the statistical 
output  of the process but are interested in individual events, for example, the 
living molecule with the particular chirality, by the way, for some reason. Then 
the decoherence is not sufficient. You need to describe or to find a mechanism 
what is called the probability redistribution. It  means that  not only the different 
initial states in superposition become uncorrelated, but all the probability goes 
to a particular state in a particular event. This is, of course, a much more difficult 
problem to be solved. There are some at tempts to find how it may happen but, 
of course, they do not rely upon the decoherence within the existing quantum 
mechanics. Particularly, the quantum chaos is a part of quantum mechanics, it 
is nothing beside the SchrSdinger equation, a special solution of this equation. 
This redistribution of probabilities, if it is a real process which is the question 
at the moment, if there is no other explanation of the whole problem, requires 
unfortunately (or fortunately, I don' t  know) some changes in quantum mechan- 
ics because the Schrdinger equation does not describe this. And it this the main 
difficulty. So what is your opinion? 

Noyes :  For me, this problem can only be discussed in the framework of a phys- 
ical cosmology which sets the boundary conditions in such a way that  they are 
not arbitrary. My own cosmological model does just this in a way that  is briefly 
discussed in Chapter 5 of my contribution to this conference. However, for the 
problem of the origin of biomolecular chirality which you mentioned, my cos- 
mology coincides with the conventional view that  earth-type planets are formed 
from the debris of supernovae, and hence are formed in a specific and necessarily 
chiral environment. This idea is due to Ed Rubenstein and is discussed briefly 
in "Supernovae and Life" by E. Rubenstein, W.A. Bonnet, H.P. Noyes and G.S. 
Brown in Nature 306, 118 (1983). When a star goes supernova it leaves behind a 
neutron star which traps the magnetic field and can be detected observationally 
as a pulsar. Out to the radius where rigid body motion would exceed the ve- 
locity of light, the ionized plasma is locked into this rotating magnetic field and 
emits synchrotron radiation. This chiral radiation has opposite chirality above 
and below the plane of rotation. Bill Bonnet has shown that  200 nanometer chi- 
ral radiation, which is plentiful in the pulsar spectrum, decomposes a racemic 
mixture of leucine molecules leaving behind a 4% enatiomeric excess of left- or 
right- handed molecules depending on the chirality of the radiation. Thus any 
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organic molecules in the interstellar medium from which the planets are formed 
necessarily are handed from the start. We now know that  interstellar organic 
molecules cling to interstellar dust grains in forms that  support  this mecha- 
nism for the production of pre-planetary and planetary biomolecular chirality. 
Thus this particular problem is solved by embedding it in a well understood 
cosmological evolutionary scenario. This moves the statistical problem from the 
quantum mechanical to the macroscopic level, which is part of the problem my 
contribution to this conference addresses. No "observer" is needed. 
Ch i r ikov :  I agree, perhaps, it is not the best example. Nevertheless, we need not 
only statistical results, but also individual ones to understand the events around. 
As to the cosmology, perhaps you know that  Gell-Mann has studied recently this 
problem in cosmology, I give you a reference. The problem is the quantum birth 
of the universe. And the question for him is: who was the observer at tha t  time? 
So he tried to develop a kind of automatic observer, a very particular type of 
information system. But, in my opinion, you don't  need to study such a great 
problem to understand this. The  electron diffraction on two slits is quite sufficient 
to understand all these difficulties, and to find a solution. 
W e i n g a r t n e r :  I have two other questions: The one concerns that  example of 
you with the comet Halley. And you said that  this just is a chaotic behavior. 
Now my question is whether this behaviour is chaotic only in the sense tha t  it is 
a simple bifurcation that  it is oscillating this way or does the comet break out 
from the plane of the ellipse? 
Ch i r ikov :  All this is known more or less in some detail because the comet Halley 
is not only a famous event but  the only comet for which the most information 
was updated during many years. So, it is most simple to calculate its trajec- 
tory and everything not only presently but over 2000 years or so. And then it 
was found from numerical simulation, very simple by the way, that  the orbit is 
chaotic. It  is within a chaotic component of motion in the sense that  everything, 
period, excentricity, inclination, fluctuate chaotically. So, for example, the pe- 
riod and semi-major axis are diffusing and, moreover, in both directions of time. 
One interesting thing is tha t  we are interested not so much in forward diffusion 
because this comet has no future. It will simply disappear, melt and evaporate. 
What  is much more interesting - the diffusion backward in time because, then, 
you can estimate how long it is within the solar system. The answer - 10 million 
years - is not clear how to interprete. This is very small compared to the cosmo- 
logical scale, and so you need to understand the origin of, at least, this particular 
comet: where it came from, how it appeared within the solar system. Maybe not 
all of you know that  recently it was found that  not only particular parts of the 
solar system like comets and asteroids are chaotic but  the whole solar system 
is also chaotic. Planetary motion is chaotic. But we are not in immediate dan- 
ger because even the instability scale involving Lyapunov's exponent is about  5 
million years, so we have enough time! 
W e i n g a r t n e r :  When you mentioned this exponential dependency, Lyapunov 
exponent then, you mentioned also that  this is a sign not only for the diverging 
adjacent points for instance, but also for a loss of information. I always thought  
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tha t  this could be interpreted with Shannon's definition of information but  you 
mentioned that  it is not like this. Do you have a reason why you cannot interpret  
it tha t  way? 

C h i r i k o v :  You must understand me: I am not an expert in this mathemat ica l  
theory. But  what  I actually mean, Shannon's conception is the statistical in- 
formation for a given ensemble. I t  is calculated via the distribution function, 
for example,  of many  trajectories. Suppose, that  within this ensemble there is 
a symbolic trajectory: 0,0,0,... The statistical definition would not distinguish it 
from any other t ra jectory but it is obvious tha t  the former has not the average 
information, its information is zero. Kolmogorov and other researchers developed 
a new conception - the information on an individual trajectory. And this infor- 
mat ion can be interpreted in two opposite ways. One is how much information 
you need to predict. You need some information from somewhere if you want 
to predict. And since this is an information flow, information per unit time, 
you cannot do prediction with any finite algorithm, for example. You need a 
permanent  flow of information from the observation or whatever. Another  way 
is how much information you can obtain if you follow the trajectory, record it. 
Particularly, you can obtain the information about  the initial conditions, actual 
initial conditions, because in this picture, in this theory you assume the trajec- 
tory  itself is exact, it is not a beam of trajectories, not a distribution function. 
You have a single trajectory. 
B a t t e r m a n :  I have a question about  what  you were saying about  the correspon- 
dence principle. One of your transparencies, you mentioned something called 
"conditional chaos". I was just  wondering whether by tha t  you mean what  is 
sometimes called "quantum pseudo-chaos" or whether you mean something else. 
C h i r i k o v :  Conditional chaos is the chaos which arises under certain special 
conditions. On both  sides of this t ransparency there are the unconditional state- 
ments: never chaos, and always chaos. But the correspondence principle requires 
quantum chaos in some sense, some quantum chaos, if and only if there is chaos 
in the classical limit. Another  way to describe this situation is the conditional 
double limit which is, perhaps, not a common term. You have several limits 
and take them simultaneously but  under a certain special relation between the 
variables. 

B a t t e r m a n :  Tha t  raises an interesting questions about  the view tha t  quan tum 
mechanics is the true and fundamental  theory, and that  classical mechanics is 
completely replaced or superseded. Because, it seems to me tha t  one needs to 
make sense of the notion tha t  quantum chaos is conditional upon what  happens 
in the classical phase space. At least in the quasi-classical limit, it looks like 
reference to classical structures are necessary to explain or account for certain 
apparent ly  quantum mechanical phenomena (such as the statistics of spectra).  If  
this is so, then in what  sense is quantum mechanics basic? How has it superseded 
classical mechanics? Why shouldn' t  one say that  quantum mechanics is, in part ,  
dependent  upon classical mechanics? 
C h i r i k o v :  This is one of the most deep questions. The other way around, I 
never considered the possibility tha t  quantum mechanics would be not the basic 
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theory. Even though there are such theories which t ry  to derive the quantum 
properties from classical ones. 
B a t t e r m a n :  Right. Using Maslov's techniques and so on. 
Ch i r ikov :  No, no. This is technical. When I say that  there is a single mechanics 
I mean that  generally everything must be described or can be described by 
the quantum equations while the classical mechanics is an approximation, the 
limiting case. When you said the way around, you meant that  everything can 
be described by Newtonian classical equations? There are such theories: Bohm's 
theory, and some versions of that.  I don't  believe at all in this possibility, for 
me it is not a question. But there is another question: do you have two separate 
mechanics? I don' t  know. Quantum mechanics for micro-world is not necessarily 
strictly related to the classical mechanics of the macro-world. This essentiMly 
is the difficulty of the statement that  the correspondence principle fails. Some 
people say this. But they should understand the implications of the s tatement  
on two different mechanics. You can take such point of view but then there 
is a difficulty (I never thought about it very much because my preference is 
different): where is the borderline and how to divide the world between these 
two mechanics. If they are separate we need to divide. Instead, you may t ry  to 
take the point of view that  only quantum mechanics is fundamental. Tha t  does 
not mean you cannot use the classical mechanics, it is a perfect approximation 
in the macro-world but not in fundamental problems. Everything should have 
quantum explanation principally. If you cannot find one or the quantum theory 
gives you a different result as, for example, it may seem in the dynamical chaos, 
a very unusuM and relatively new phenomenon, then there is a problem. Now, 
my statement,  not opinion but statement, is: so far we have no contradiction 
with the idea that  there is only quantum mechanics. So far I don' t  know any 
contradiction. We may find one later on but so far no contradiction exists, and 
in this sense I said that  the correspondence principle was confirmed. 
Schurz :  Did I understand you right that  already in classical mechanics you have 
two possibilities of representation, via trajectories and via phase density. And 
you said the representation via a phase density is always linear. 
Ch r i r i kov :  The equation is linear. 
Schurz :  Yes. This happens also in classical mechanics. So, the question of getting 
chaos from non-chaos could be studied already in classical mechanics because 
if you use a linear phase density equation in classical mechanics it should not 
be chaotic. If you describe it by trajectories you have a system which behaves 
chaotic. But  if you describe it via phase density the equation is linear and it 
does not exhibit chaotic behavior. 
Ch i r ikov :  It does! 
Schurz :  But it is linear. You said a necessary condition for chaos is non-linearity. 
Ch i r ikov :  No, for trajectory equation. 
Schurz :  How does such a linear phase density equation produce chaos in classical 
mechanics? 
Ch i r ikov :  The question is how to imagine this because, first of all, this is a rig- 
orous result, both types of description are completely equivalent. The  situation 
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is the following. Sometimes people say: quantum equations are linear, hence, the 
quantum chaos is not classical. This is a completely wrong statement because we 
can refer to the Liouville equation. So, the question is not whether the equation 
is linear or nonlinear but what kind? There are different kinds of linear equations 
with qualitatively different properties. Now about the relation of nonlinearity to 
chaos. There are different definitions of chaos we discussed yesterday in relation 
to the motion stability. The most common definition is related to the exponen- 
tial instability. Now, the exponential instability is a property of the linearized 
equations of motion, by the way. Generally, you don' t  need nonlinear equations. 
Nevertheless, we do need some nonlinearity even in terms of the linear equations 
for Lyapunov exponent or in terms of linear Liouville equation. What  is the role 
of nonlinearity then? To make the motion bounded. Because if it is unbounded 
then unstable motion is not necessarily chaotic. If you have simple exponential 
instability, you would never call it chaotic. Why? It is just an explosion of trajec- 
tories. So, from this point of view nonlinearity simply restricts the motion to a 
finite phase volume, makes it bounded in phase space. Then, in combination with 
instability, you obtain the mixing of trajectories. This is a graphical view of the 
chaos mechanism. Now, another interesting question: what means exponential 
instability in terms of wave or Liouville equation? It depends in which space you 
consider the instability. If you consider the space of density itself, slightly change 
the distribution function or C-function, then the difference is described by the 
same equation and you have no instability at all. Nevertheless, in Schr6dinger 
equation, in classically chaotic case, there is a relatively short t ime interval when 
the quantum motion is exponentially unstable if you do not use the Hilbert space 
but  the phase space of classical mechanics. Consider, for example, two narrow 
wave packets or two distribution functions very close to each other. Because of 
the instability each of them is spreading, and also they diverge from each other 
very quickly. But why is it different? Because in terms of linear equation it is 
not a small change of the wave function: you have one wave packet and then 
another one. Let me show briefly a picture how it looks in a quantum system, on 
a simple model. This is phase space and this is the initial wave packet, the so- 
called coherent state, which is the most narrow wave packet. You see the wave 
packet is spreading very quickly as under the classical exponential instability. 
And then, after three steps of the map, everything is destroyed, and there is 
no more relation to the classical picture. Instead, you see wild fluctuations of 
the wave function but nevertheless during a much longer time the diffusion and 
relaxation still remain classical even though the C-function itself has almost no 
resemblance to the classical distribution. 

Noyes :  Just a quick comment on this question of correspondence principle. This 
is a question which is being investigated empirically by Tony Leggett at the Uni- 
versity of Illinois. He asks whether a system containing 1015 atoms still behaves 
as a quantum system, or if for such a large number quantum coherence has to 
disappear. The system he uses is two superconducting flux loops ("SQUID's") 
can be shown to contain either zero or one flux quantum. By coupling them 
through a Josephson junction and insuring that  the system contains a single 
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flux quantum in one loop and none in the other, one can then ask whether the 
"tunneling" of this quantum state from one macroscopic loop to the other fits 
the quantum mechanical prediction or not. If it does not, he will have discov- 
ered a complexity parameter which could be interpreted as showing where the 
transition from quantum to classical occurs. Then there would have to be a new 
theory which might show that  there actually is a classical regime. Despite the 
success of the usual assumption that  quantum mechanics rather than classical 
physics has to be the fundamental theory, it's an open question from the point 
of view of experiment. 
Ch i r ikov :  I agree. Such a question you would never answer completely. We have 
a common solution and you must be ready to change this solution and not nec- 
essarily to follow your preferences. I would like to mention that  the phenomenon 
you spoke about is a particular case in the very intensively studied field. Now 
it is called mesoscopics. Maybe you heard the word: mesoscopic is something 
intermediate. But what people have in mind is that  you may be very far in the 
quasi-classical region, with quantum numbers arbitrarily large, but nevertheless, 
under some additional conditions, the behavior may be essentially quantum. 
This is called mesoscopic phenomena. Of course, the extreme case of this is well 
known since long ago: superfluidity and superconductivity. Mesoscopic phenom- 
ena are called also the intermediate asymptotics. It means that  the quantum 
numbers may be arbitrarily large but still it is not the final answer for the corre- 
spondence principle, you must go further and you will reach the quantum chaos, 
it is a theorem. But  the example you mentioned is more complicated and more 
interesting. 
Suppes :  I 'd like to use the privilege of the chair to ask one quick question. In 
your example a minute ago of the two wave functions that separate exponentially, 
if you take the expectations of the wave functions then you get a path trajectory. 
Are those two paths classically scar-paths - in the language of quantum optics, 
are those expected paths chaotic in the classical sense? 
Chi r ikov :  You mean some average in the spirit of the Ehrenfest theorem or 
something like this? No. Unfortunately, I had no time. But I mentioned tha t  
there are characteristic time scales of quantum motion. The most important  
one I mentioned is the scale on which classical diffusion and relaxation proceed. 
But there is another one, very short, proportional only to logarithm of quantum 
number or of Planck's constant on which initially narrow wave packet remains 
relatively narrow and simply follows the classical trajectory. So, if this t rajectory 
is random, then the motion of the packet on this time scale is equally random. 
But it terminates because of the spreading of the wave packet and of its eventual 
destruction I showed. Then, you can no longer follow the wave packet as you 
have instead a very complicated structure of ~b-function but, nevertheless, the 
classical diffusion still persists. 
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A r e  Laws  Invariant?* 
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0 I n t r o d u c t i o n  

In order to be able to describe and explain movement we need to distinguish 
something which changes relative to something which does not change. This im- 
portant  distinction is pointed out by Aristotle 1 also as a criticism of Parmenides'  
theory of the universe which assumes only one being and nothing else? Tha t  
what changes, moves was thought to be contingent (not necessary) in respect to 
the not changing (or even not changeable) necessary principle or law. In general 
this idea belongs to the Greek Ideal of Science which was more or less manifest 
in several greek thinkers from Thales on but was elaborated in detail by Plato 
and Aristotle: 

To describe and explain the visible (observable), concrete, particular, chang- 
ing, material world by non-visible (non-observable) abstract, universal, non chang- 
ing and immaterial principles. 

The problematic character of the distinction between abstract unchangeable 
laws and particular and contingent changing events and conditions is stated in 
modern terms very well by Wigner: 

"The world is very complicated and it is clearly impossible for the human 
mind to understand it completely. Man has therefore devised an artifice which 
permits the complicated nature of the world to be blamed on something which 
is called accidental and thus permits him to abstract a domain in which simple 
laws can be found. The complications are called initial conditions; the domains of 
regularities, laws of nature .. . .  The  artificial nature of the division of information 
into "initial conditions" and "laws of nature" is perhaps most evident in the 
realm of cosmology. Equations of motion which purport to be able to predict 
the future of a universe from an arbitrary present state clearly cannot have an 
empirical basis. It is, in fact, impossible to adduce reasons against the assumption 
that  the laws of nature would be different even in small domains if the universe 
had a radically different structure. One cannot help agreeing to a certain degree 
with E.A. Milne, who reminds us (Kinematic Relativity, Oxford Univ. Press, 
1948, page 4) that ,  according to Mach, the laws of nature are a consequence of 

* The author is indebted to Boris Chirikov for a number of valuable remarks concerning 
an earlier version of the paper. 

1 Aristotle (Phys), 190alTf. 
Aristotle (Met), 986b15f and Aristotle (Phys), 186a24ff.. 



48 Paul Weingartner 

the contents of the universe. The remarkable fact is tha t  this point of view could 
be so successfully disregarded and that  the distinction between initial conditions 
and laws of nature has proved so fruitful. ''3 

This problematic character has appeared more clearly within the last 30 
years when new phenomena like chaos, self similarity and structure and order 
were discovered. 

The paper  will concentrate on the relation between laws and initial (and 
boundary)  conditions in the light of new discoveries when non-linearity is present, 
i.e. phenomena of order and structure, selfsimilarity and chaos. This  will be 
done by discussing important  properties of laws. In this connection I want to 
underline tha t  when speaking of properties of laws or of conditions which are 
satisfied by laws what one is searching for in a sense is to find "laws" about  
laws. Thus the symmetry  principles are "metalaws" in this sense: "It is good to 
emphasize at this point the fact that  the laws of nature that  is, the correlations 
between events, are the entities to which the symmet ry  laws apply, not the events 
themselves. ' '4 "Nevertheless, there is a structure in the laws of nature  which we 
call the laws of invariance. This structure is so far-reaching in some cases tha t  
laws of nature were guessed on the basis of the postulate tha t  they fit into the 
invariance structure. ''5 

1 Q u e s t i o n  one: 

Are all laws deterministic in the sense that - given an initial state - any state in 

the future can be predicted and any state in the past can be retrodicted? 

1.1 T h e  I d e a  o f  L a p l a c e  

A positive answer to the above question was the idea of Laplace. 6 I t  can be 
illustrated by the following example: 

Assume a film is made of the world, i.e. of the events happening in the whole 
universe. After the film is developed we cut it into pieces corresponding to single 
film-pictures. Now we put  the single pictures successively in t ime (in the order 
of t ime) into a long card index box like the cards of a l ibrary catalogue. Then 
one special s tate of the universe at a certain t ime t corresponds to one such 
card (film picture) of the catalogue. One can follow one t ra jectory across the 
(perpendicular to the) catalogue-cards. 

Interpreted with the help of this illustration Laplace's determinism means 
tha t  it suffices to know the law(s) of nature and one single catalogue card (film 
picture) corresponding to one state (of the universe) at a certain t ime t in order 

3 Wigner (1967), p. 3. 
4 Wigner (1967), p. 19. CL also p. 16f. 

Ibid. p. 29. 
6 Cf. Laplace (1814), Ch. 2. For a discussion of determinism and indeterminism cf. 

Van Fraassen (1991), chapters 2 and 3. 
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to construct all other cards of the catalogue, i.e. to predict and to retrodict  all 
the other states of the universe. 

Tha t  Laplace's idea is not satisfied in certain areas was discovered a long 
t ime ago. Thermodynamics  is one example, friction and diffusion are others. 
Such discoveries led to another global question: Are all laws statistical? 

The  mechanistic world view underlying Laplace's determinism was based on 
the belief tha t  all physical systems are - if analyzed in its inmost s t ructure - 
ul t imately mechanical systems. Since a clock was understood as a paradigm 
example of a mechanical system the main thesis of the mechanistic world view 
could be expressed by saying tha t  all complex systems (things) of the world 
- even most complicated ones like gases, swarms of moscitos or clouds - are 
ul t imately (i.e. if we would have enough knowledge of the detailed interaction of 
the particles) clocks. Or to put it in Popper ' s  words: "All clouds are clocks. ' 'v 

After the discovery of statistical laws in thermodynamics  and later in other 
areas there was a general doubt with respect to the mechanistic and deterministic 
interpretation of the world. One of the first philosophers to notice tha t  a certain 
imperfection in all clocks allows to enter chance and randomness and tha t  even 
the most perfect clock is, taken in respect to its molecular structure, somewhat  
cloudy, was Charles Sanders PeirceS: 

"But it may be asked whether if there were an element of real chance in the 
universe it must not occasionally be productive of signal effects such as could 
not pass unobserved. In answer to this question, without  stopping to point out 
tha t  there is an abundance of great events which one might to be t empted  to 
suppose were of that  nature, it will be simplest to remark tha t  physicists hold 
tha t  the particles of gases are moving about  irregularly, substantially as if by 
real chance, and tha t  by the principles of probabilities there must occasionally 
happen to be concentrations of heat in the gases contrary to the second law 
of thermodynamics,  and these concentrations, occurring in explosive mixtures, 
must  sometimes have tremendous effects." 

The question was now: Could it not be the ease that  all laws are statistical 
and the deterministic outlook is only on the surface of macroscopic phenomena? 
Tha t  is all complex systems (things) of the world are in fact - in its inmost 
structure, i.e. on the atomic level - like gases or swarms of moskitos or clouds. 
This led to another extreme picture "All clocks are clouds." 

But  neither of these extreme pictures proved satisfactory as an explanation 
of everything. The heroic ideal to explain everything by one (or one kind of) 
principle had to be replaced by the aim to find relatively few (kinds of) principles 
(laws) for relatively many facts. "We do not have one structure from which all 
is deduced, we have several pieces tha t  do not quite fit exactly yet. ''9 

By the mid of the twentieth century many physicists accepted a view which 

r cf. Popper (1965), p. 210. 
s Peirce (1935, 1960), 6.47. Cf. Popper (1965), p. 213. Popper in this essay called my 

attention to the passage of Peirce. 
9 Feynman (1967), p. 30. 
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can be roughly stated as follows: 

(1) In respect to some areas (mainly macroscopic) deterministic laws with 
good predictability for single events give an adequate description and explana- 
tion. 

(2) In respect to other areas ( thermodynamics,  friction, diffusion and mi- 
croscopic ones) statistical laws with no good predictabili ty for the single event 
but  with predictability for the whole aggregate give an adequate description and 
explanation. 10 

Understood in this way it was compatible tha t  for example the pendulum 
interpreted as a macroscopic dynamical system obeys Newton's laws and allows 
strict prediction whereas interpreted as a microscopic system, i.e. in respect to 
its atomic structure behaves in some of its features like a cloud and can then 
be adequately described by statistical laws without  strict predictions for single 
particles. 

1.2 T h e  N e w  D i s c o v e r y  

The  above mentioned compromise was tha t  a physical system obeys a certain 
type of law in respect to a certain area of application (for instance as a macro- 
scopic dynamical system) but  obeys a different type of law in respect to another  
area (for instance if its atomic structure is analyzed). 

The  new discovery now was tha t  even within one such area the behaviour 
of the system can change radically such tha t  a "clock" can become a s tormy 
"cloud". Thus a dynamical system obeying Newton's  laws with strict predictabil- 
ity can become chaotic in its behaviour and practically unpredictable just  by 
changing slightly some initial conditions. Experiments  which prove such a be- 
haviour of dynamical systems have been made since the seventies. A special kind 
of very simple arrangements are experiments with the socalled forced pendulum 
or with the kicked rotator. One type of such an experiment is described below: n 

The socalled spherical pendulum consisting of a small weight at tached to 
the lower end of a string (of length l) has a period To = 2 7 r v ~  of sinusodial 
oscillations (provided the oscillations are small). The  spherical pendulum (under 
normal conditions with small amplitudes) shows a regular behaviour with at  least 

10 The notion of predictability is of course to some extend independent of the notion of 
law (whether deterministic or stochastic). That even deterministic (dynamical) laws 
do not automatically imply predictability was shown again by such phenomena as 
chaotic motion. On the other hand the noition of predictability is not a completely 
epistemic notion. If it is characterized in an adequate way, it has to be dependent 
on important properties of laws as necessary preconditions. 

11 For details see Lighthill (1986). For the kicked rotator see Chirikov (1979). The 
first forerunner of such an experiment was the Galton Board (cf. Galton (1889)). 
Theoretically chaotic behaviour was investigated already by Hadamard and Poincar@ 
and more specifically in the area of metereology by Lorenz (1963). 
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three important  characteristics: 12 

1.2.1 It is periodic, i.e. the state of the system repeats itself after a finite period 
of time and continues to do so in the absence of external disturbing forces. 

1.2.2 The state of the system at any given time ti is a definite function of its 
state at an earlier t ime ti-1. A unique earlier state (corresponding to a unique 
solution of the equation) leads under the time evolution to a unique final state 
(again corresponding to a unique solution of the equation). 

This property is a more precise description of Laplace's idea illustrated by 
the film-pictures as definite states (or unique solutions). It is usually taken as 
the defining condition for determinism. 

1.2.3 The spherical pendulum has a certain type of stability. Assume we make 
very small changes in the initial states, say within a neighbourhood distance 
of 6. Then the distance of the state h(~) is proportionally small (no more than 
a linearly increasing function of time). This kind of stability with respect to 
small perturbations is called "perturbative stability" which holds in many linear 
systems. The very important  false belief of most scientists until 1970 was that  
this holds also for the general case. 

The important new discovery is now that  this simple physical system becomes 
chaotic if the top end is forced to move back and forth (maximal displacement 
A) with a slightly different period T greater than To, provided that  A is about  
1/64 of I and not more than about  a tenth of the energy of motion is dissipated 
by damping (air resistance etc.). Miles (1984) showed experimentally tha t  the 
system is chaotic for values of T = 1,00234To. It  has to be emphasized however 
tha t  this does not just mean that  the system becomes unstable in the sense 
of simple bifurcation. Unstability in the sense of simple bifurcation has been 
known for a long time. In this case the pendulum weight makes a back and forth 
oszillation in the same plane and by forcing the upper end this movement begins 
to be unstable. Such a simple bifurcation where the plane is not changed occurs 
when T = 0,989T0 and slightly above. But for T = 1, 00234T0 the pendulum 
is breaking out of the plane, the number of further bifurcations are arbitrarily 
increasing, the dependence on initial conditions is completely random such that  
there is no predictability (or only for very short times). 

In view of the new discoveries of this sort Lighthill made the following ac- 
knowledgement which shows a change of view under physicists: 

"Here I have to pause, and to speak once again on behalf of the broad global 
fraternity of practitioners of mechanics. We are all deeply conscious today that  
the enthusiasm of our forebears for the marvellous achievements of Newtonian 
mechanics led them to make generalizations in this area of predictability which, 
indeed, we may have generally tended to believe before 1960, but which we 
now recognize were false. We collectively wish to apologize for having misled 
the general educated public by spreading ideas about the determinism of sys- 

12 These three characteristics are pointed out very clearly in Holt and Holt (1993), p. 
716L 
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tems satisfying Newton's laws of motion that,  after 1960, were to be proved 
incorrect." 13 

Before finishing this section I want to mention that  despite this new situation 
in physics unpredictable chaotic phenomena in practical and active life have been 
known by experienced people ever since (see chapter 2.1). 

1.3 C h a o t i c  B e h a v i o u r  

Subsequently I shall give seven characteristics of chaotic behaviour which are 
necessary conditions for most kinds of chaotic motion (exceptions will be men- 
tioned): 

1.3.1 T h e  L o c a l  I n s t a b i l i t y  Is E x p o n e n t i a l  
Small changes in the initial conditions lead to exponentially increasing bifur- 
cations. Not just simple bifurcations which have been known so far as unstable 
behaviour or as small perturbations i.e. it is not a case of "perturbative stability" 
(cf. 1.2.3). This property of being sensitively dependent on initial conditions is 
measured by the (positive) Lyapunov exponent (see chapter 2). This condition 
is taken by some as the defining property of chaotic behaviour: "Chaos is thus 
the prevalence of sensitive dependence on initial conditions, whatever the initial 
condition is." 14 

But there is sensitive dependence on initial conditions where we could not 
speak of chaotic behaviour as the example of Maxwell shows (see chapter 2). 
Thus it is better  to add more conditions for further specification. 

1.3.2 N o  P r e d i c t a b i l i t y  
The randomness in the output  is so strong that  no prediction is possible for 
the system (except for a very short time). Prediction (and also explanation of a 
certain state which corresponds to a unique solution of the equation) is based on 
some kind of regularity described in 1.2.1 - 1.2.3. But if all the three conditions 
or kinds of regularity fail - as is the case with chaotic behaviour - then there is 
no predictability (except for a very short time). Also there is no explanation in 
the sense of being symmetrical to prediction. 

It should be noted that  the underlying laws for the dynamical system in ques- 
tion (in the above example the pendulum) are deterministic laws in the sense 
of condition 1.2.2. That  means that  for a certain state at time ti (represented 
by a unique solution of the differential equation) the law (differential equation) 
gives ("predicts") a unique solution representing a certain state at ti+l. With 
small amplitudes the pendulum obeys all three conditions 1.2.1 - 1.2.3 perfectly 
well. But even the forced pendulum obeys these conditions for most of the initial 
conditions. Should we now say that  for very special asymmetrical initial condi- 
tion the (still) symmetric laws lead to completely asymmetrical outputs? (Cf. 
chapter 4). Or should we say that  the behaviour of the forced pendulum shows 

13 Lighthill (1986), p. 38. 
14 Ruelle (1990), p. 242. 
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tha t  we do not know the deeper underlying laws which might not have those 
symmetr ies  which we assume for the dynamical taws. To recall the introduction: 
Is it just  a question of random complications of initial conditions or a question 
of the appropriate  laws (despite Wigner 's  critical at t i tude concerning this very 
distinction)? (Cf. Chapter  7). Chirikov (these proceedings), ch. 1 seems to inter- 
pret  it as a question of Iaws in the sense tha t  the respective statistical laws as 
secondary laws form an intrinsic part  of the pr imary dynamical laws. 

1.3.3 S u p e r p o s i t i o n  D o e s  N o t  H o l d  
Chaotic behaviour in the sense of classical dynamical chaos requires physical 
systems whose equations are non-linear, i.e. the superposition principle does not 
hold (cf. chapter 3). This is connected with 1.3.1 since the exponential instability 
(positive Lyapunov exponent) is non-linearJ 5 

I t  is worth mentioning though tha t  not every chaotic behaviour is non-linear. 
An example is linear wave chaos in quantum mechanicsJ 6 Thus non-linearity is 
a necessary condition for classical dynamical chaos but for chaotic behaviour in 
general it is neither necessary nor sufficient. 

1 .3.4 N o n - p e r i o d i c i t y  
Chaotic behaviour is non-periodic. And this holds without any external distur- 
bance (cf. 1.2.1). A consequence of that  is a further characteristic of chaotic 
motion: The  Poincard map  shows space-filling points. This is a method intro- 
duced by Poincar~ about  100 years ago which considers the points in which the 
t ra jec tory  cuts a certain plane. If the motion is chaotic there will be no imme- 
diate recurrence tha t  is the plane will always be cut at new points and as t ime 
goes on will be filled with points. But  if the phase space is small there will be 
recurrance of the t ra jec tory  after some finite period of time. To give an illustra- 
tion: skiing in fresh powder snow is a great pleasure. But  if the slope is small 
and one is skiing down frequently the slope will be filled with traces and after 
some t ime no new space is Ieft and thus one has to use ones own traces again 
(recurrence). If  the system is Hamiltonian and area preserving (finite region) 
then the Poincar~-recurrance theorem holds. I t  says tha t  the t ra jec tory  returns 
to a given neighbourhood of a point an infinite number of times. If  it is ergodic 
then the system explores the entire region of phase space and eventually covers 
it uniformly (this implies also recurrency). In stronger kinds of chaotic motion 
the t ra jec tory  might not cover the whole phase space and neither s tay in a local 
area. The description is then more complicated. 

15 A non-linear function is a function which contains a variable raised to a power 
other than one or zero; or a product of two (or more) variables; or a variable as the 
argument of a transcentendal function (sin, cos). An equation containing one or more 
of such non-linear terms is a non-linear equation. It has to be mentioned however 
that the question of linear or non-linear equations depends in a sense also on the 
kind of description which is choosen as the most suitable in the particular case. Thus 
to describe the phase space density a Liouville equation can be used which is linear 
(cf. Chirikov (these proceedings), ch. 2.1. 

16 Cf. Chirikov (1992). 
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In general it has to be observed that  Poincar6's recurrence theorem is sen- 
sitive with respect to certain conditions. Already Boltzmann 17 understood very 
well tha t  it could not be applied to a gas on the assumption tha t  the number  of 
its molecules is infinite and t ime becomes very long. On the other hand if the 
number  of molecules is very large but finite and t ime is infinite then recurrence 
takes place. Zermelo is thought that  Poincar~'s recurrence theorem contradicts 
Bol tzmann 's  statistical mechanics as an interpretation of thermodynamics,  but  
in fact he had misunderstandings concerning important  conditions. As Boltz- 
mann  points out the essential fact is that  the length of t ime after which the old 
s ta te  of a gas should recur according to the recurrence theorem is not observ- 
able (measurable) - because it is much too long, i.e. the recurrence is extremely 
unprobable (though not impossible). To illustrate: Increase the number  of skiers 
and enlarge the slope: it will be more and more unprobable tha t  the initial s ta te  
of all skiers being in a certain position recurs. Or use the example which is given 
in chapter  5.4: One passenger might come back to his deadend airport  by chance 
after a long time. But  if millions of flight passengers fly around without  any 
flight information the probabili ty of recurrence - say all are again in the original 
s tar t ing position - will be very low. Imagine now a one-litre of gas with about  
2, 7.1022 molecules! These considerations show that  it depends very much on 
the complexity of the chaotic system what kind of recurrence (theoretical, after 
an infinite length of t ime or observable) we have. 

For other important  parameters  recurrency does not hold in chaotic motion. 
For example phase density is nonrecurrent, it will never come back to its initial 
state, independently of the direction of time. Thus we have non-recurrency and 
time-reversibility (the latter also for the relaxation property).  In consequence it 
is impor tan t  to notice tha t  non-recurrence is not sufficient to derive t ime irre- 
versibility. Non-recurrence and time-irreversibility are not equivalent notions. 19 

The  non-periodicity can also be measured by the invariant density which 
measures how the iterations become distributed over the unit interval and by 
the correlation function f(m) which measures the correlation between iterations 
which are m steps apart .  

1.3.5 B o u n d e d  M o t i o n  
Chaotic motion is bounded. Tha t  means tha t  the number of degrees of freedom 
is limited in different ways depending on the kind of chaotic motion. These 
limitations make the motion - roughly speaking - "oscillatory" in t ime between 
stable points (fixed points) whose number multiplies in dependence of certain 
parameters .  One speaks of "folding" with respect to an interval, whereas the 
exponential  separtion of adjacent conjugate points (Lyapunov exponent > 0) is 
called "stretching". Another possibility is tha t  a t ra jectory becomes a t t rac ted  
to a bounded area of phase space, i.e. to a socalled "strange attractor",2~ within 

a7 Cf. Boltzmann (1897a), Boltzmann (1897b). 
as Zermelo (1896a), Zermelo (18965). 
19 Cf. Chirikov (these proceedings), ch. 2.2. 
2o Cf. 2.2.2 and Ruelle (1980). 
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which there is exponential separation of adjacent conjugate points. 
Theoretically the boundaries are usually described as Neumann or Dirichlet 

conditions. In the practical experimental application they may mean for example 
the size of the system, the number of rolls in a fluid layer of a Bdnard-experiment, 
the diffusion coefficients in a chemical experiment etc. 

1.3.6 C h a n g e  o f  t h e  Var i ab le s  o f  t h e  S y s t e m  
A further necessary condition for chaotic behaviour is the permanent change of 
the important  variables of the system. For example in the case of the forced 
pendulum the change of the amplitude, in the case of a fluid under heat the 
change of the conductivity of heat in the layers of the fluid. Although these 
magnitudes remain within a minimum and maximum value they do not recur in 
the course of time (cf. 1.3.4.). 

1 .3.7 N o n - i n t e g r a b i l i t y  
Let  x(t, xo) be a function describing the motion of a dynamical system, where x0 
are the initial conditions (the position of the system at t = 0). Let the function 
x(t, Xo) have a pole at tp = t l  =]= iA in the complex t plane, where A is the 
Lyapunov-exponent. Then the system is integrable - according to a criterion of 
Kowalevskaya 21 - if every tp depends on x0. Now chaotic behaviour (motion) is 
non-integrable and therefore its poles do not depend on x0 and specifically A 
does not depend on x0 (cf. chapter 2). 

It  should be mentioned however that  there are weak kinds of chaos or "quasi- 
chaos" where integrability holds like in Quantum Chaos. A somewhat stronger 
case is partial integrability (KAM-integrability) when an integrable system is 
exposed to weak perturbation but is resistent. In this sense integrability (non- 
integrability) can be used to distinguish levels of disorder in an arrangement 
beginning with full integrability via KAM-integrability to chaos. 22 

1.3.8 C o n t i n u o u s  S p e c t r u m  
The Fourier spectrum of the chaotic motion which is aperiodic (cf. 1.3.4) is 
continuous and its phase space is continuous, whereas regular motion (i.e. motion 
which obeys at least one of the 3 conditions 1.2.1 - 1.2.3) has a discrete spectrum. 
If we count the number of degrees of freedom (for example these may correspond 
to the number of rolls of a fluid layer in the B~nard experiment) by the number 
of Fourier components then already in an unstable motion at least one such 
component is continuous. 

It should be added that  Quantum chaos violates the condition of the contin- 
uous spectrum of the motion and that  of continuous phase space (cf. 1.3.3). In 
connection with the uncertainty principle (which allows only a finite size of the 
elementary cells of phase-space) the frequency spectrum of quantum motion is 
discrete for the motion bounded in phase space. In order to do justice to both - 
to this difference in respect to classical dynamical chaos and to the randomness 

21 The russian mathematician Sofia Kowalevskaya formulated the criterion in 1890. Cf. 
Chirikov (1991a), p. 450. 

22 Cf. Chirikov (1991b) and chapter 2.4 of this essay. 
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of the quantum mechanical measurement process - Casati  and Chirikov suggest 
to divide the whole physical problem of Quantum Dynamics in two qualitatively 
different parts: 

"(1) The proper quantum dynamics as described by a specific dynamical  
variable, the wave?unction r  (for example by the SchrSdinger equation) 

(2) The quantum measurement including the registration of the result and 
hence the collapse of the r function. ''23 

According to this distinction the violation of certain important  conditions of 
classical chaos holds for the first part.  The result of a measurement  process in 
quantum mechanics however is a random process and may be interpreted as a 
process of dynamical chaos. 

2 Question t w o  

Do all laws obey the principle "Similar causes lead to similar effects"? 

2.1 A r i s t o t l e  a n d  M a x w e l l  

A first warning with respect to such a principle in the area of epistemology or 
methodology we find already in Aristotle: 

"... the least initial deviation from the t ru th  is multiplied later a thousandfold." 24 
A specific warning with a counterexample is due to Maxwell: 
"There is another maxime which must not be confounded with tha t  quoted 

at the beginning of this article 25, which asserts 'Tha t  like causes produce like ef- 
fects'. This is only true when small variations in the initial circumstances produce 
only small variations in the final s tate of the system. In a great many  physical 
phenomena this condition is satisfied; but there are other cases in which a small 
initial variation may produce a very great change in the final s tate of the sys- 
tem, as when the displacement of the "points" causes a railway train to run into 
another  instead of keeping its proper course. ''~6 

Experienced highlanders in mountainous countries like Tyrol know very well 
tha t  extremely small events can lead to a bursting of an avalanche which might 
destroy huge forests and even a city. 

I t  should be noted that  the unproportional effect need not to be chaotic. 
In the example of Maxwell, the running of the train in a different direction is 
certainly not but certain phenomena of the crash might be. Avalanches on the 
other hand have always been very unpredictable events at  least and seem to be 
quite good examples for chaotic behaviour. 

23 Casati and Chirikov (1994), p. 11. 
24 Aristotle (Heav), 271b8. 
25 The one to which Maxwell refers to is "The same causes will always produce the 

same effects" which he discusses earlier. 
26 Maxwell (MaM), p. 13. 
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I want to finish this chapter with a short poem by Emily Dickinson which 
describes geniously both the big effect caused by small deviations and the time- 
irreversibility of such processes: 

The brain within its groove 
Runs evenly and true; 
But  let a splinter swerve, 
'Twere easier for you 
To put  the water back 
When floods have slit the hills, 
And scooped a turnpike for themselves, 
And blotted out the mills. 27 

2.2 Sens i t ive  D e p e n d e n c e  o n  Init ial  C o n d i t i o n s  

This is certainly one of the most important  characteristics of chaotic behaviour. 
And it is taken by some as its defining proper ty  (cf. 1.3.1). But  there are phe- 
nomena which have tha t  property without being chaotic as one can see from 
Maxwell 's example in 2.1. Therefore this condition (sensitive dependence on ini- 
tial conditions) cannot be a sufficient condition of chaotic behaviour (motion). 
But  it is certainly an important  necessary condition. This important  property is 
measured by the so-called Lyapunov-exponent  A. In fact the Lyapunov exponent 
measures two things which are described in 2.2.1 and 2.2.4. 

2.2.1 I t  measures the (exponential) separation of adjacent conjugate points (con- 
jugate  in respect to the s tar t ing point xo): 

x o Xo+~: N iterations fU(x  0 ) fN(Xo+~) 
I I I l 

E E �9 eNA(~o) 

This description of stretching of the distance between closely (~) adjacent points 
corresponds to a one dimensional Poincar~ map. In real motion the stretching 
occurs in three dimensions. 2s 

An enlightening example was calculated by Berry. 29 Assume tha t  an elec- 
tron somewhere in the universe (say 101~ light years away) looses its at t ract ion 
(gravitational force). Tha t  means a slight deviation in the initial conditions. Can 
we calculate after how many (elastic) bumps one airmolecule on the ear th (un- 
derstood as an elastic ball) fails another one as an effect of tha t  initial change 
(assuming that  it would have hit the other one if the electron wouldn' t  have lost 
its at traction)? Berry calculates tha t  this is the case after about  56 to 60 bumps. 
If  we take a man 's  at tract ion on the billiard balls at the distance of one meter  

27 I am grateful to John Bacon who called my attention to this poem. 
28 The transparent exposition in 2.2.1 and also in 2.2.4 is due to Schuster (1989). The 

respective concept of information has been worked out especially by Shannon. Cf. 
Shannon and Weaver (1949). 

29 Cf. Berry (1978). 
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from a billiard table and billiard balls (as the elastic balls) then it needs only 
about  9 bumps. 

2.2.2 T h e  S t r a n g e  A t t r a c t o r  
A good example for the exponential separation is a socalled strange attractor 
which can be characterized in the following way. 3~ A bounded set A (in m- 
dimensional space) is a strange a t t rac tor  for the map F if there is a set U with 
the following four conditions [where F maps x with coordinates (Xl...xm) ... 

Fm(xi...Xm)]: 
(a) Neighbourhood conditon: For each point X of A there is a little ball 

centered at X such tha t  X C A _C U and every such ball is also contained in U. 
(b) Attract ing condition: For every initial point X0 in U, the point Xt with 

coordinates xl (t)...xm(t) remains in U for positive t. Even for large t it stays as 
close as one wants to A. 

(c) Strangeness condition: X0 is in U. If  X0 is in U there is sensitive depen- 
dence on the initial condition. 

(d) Indecomposabili ty condition: One can always choose a point X0 in A such 
tha t  arbitrari ly close to each other point Y in A there is a point Xt  for some 
positive t. This implies that  A cannot be split into two different at tractors.  

2.2.3 I n c r e a s i n g  E r r o r  
The H6non Attractor  31 is a particular example of a strange at t ractor  which 
describes the increasing error or bet ter  the sensitive dependence on initial small 
errors. Thus the H6non Att ractor  can be viewed as one possible interpretation 
of Aristotles'  observation (cf. 2.1). 

If xt and x~ correspond to initial da ta  x0 and x~ close to each other, the 
distance d(xt, x~) increases exponentially with t. 32 

d(xt, x~) ,.~ d(xo, X~o) . a t (where a ~ 1,52). 
Since a > 1, a t increases exponentially with t, i.e. the error d(xt, x~) increases 

exponentially with time. This means tha t  small initial errors (small errors in the 
beginning) which are never completely avoidable in the case of experimental  
da ta  increase exponentially with time. 

2.2.4 The Lyapunov exponent measures also the average loss of information (I0) 
about  the position of a point in an inverval [0, 1] after one iteration. Assume 
[0, 1] separated into n equal intervals such tha t  x0 occurs in each of them with 
probabili ty 1 The answer to the question which interval contains x0 is then: 

~ 1  ld - ldn (where Id is the logarithm to the base 2) 
1 

I 0  - n n 
i = l  

30 This characterization is due to Ruelle (1980). That such attractors exist (this was 
not clear when Ruelle wrote his paper, cL p. 131) has been proved for the H6non 
attractor by Benedicks and Carleson (1991). 

31 Cf. H6non (1976). 
32 As long as the distance is small. If the distance reaches the order of the attractor it 

cannot increase anymore. 
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With  decreasing n the information Io is decreasing too and Io = 0 for n = 1. 

Concerning the information represented by a trajectory Alekseev-Brudno's 
theorem is worth mentioning: The information given with a t ra jectory of a cer- 
tain length of t ime (its algorithmic complexity per t ime unit) is asymptot ical ly  
equal to the metric entropy. 33 

2.3 K o l m o g o r o v - E n t r o p y  

The loss of information about  the state of a dynamical system in the course 
of t ime is connected with the socalled Kolmogorov-entropy ( 'K '  for short).  The 
wellknown entropy in thermodynamics  is a measure for the disorder of a system 
and by the Second Law of Thermodynamics  this disorder increases (even if lo- 
cally the entropy can decrease for example due to living systems). The  increase 
of disorder is also connected by a loss of information about  the s ta te  of the 
system (for instance about  the positions of molecules of a gas if it mixes with 
another one, cf. 2.2.4). K is a measure of the degree to which a dynamical  sys- 
tem is chaotic. For one-dimensional maps K measures the same as the positive 
Lyapunov-exponent.  For higher dimensional systems K is equal to the average 
sum of all the positive Lyapunov exponents. 34 I t  was already mentioned tha t  
the Lyapunov-exponent  measures also the loss of information about  the system 
(cf. 2.2.4). Moreover K can be defined by Shannon's measure of information in 
such a way tha t  K is proportional to the degree of loss of information of the 
s tate  of the dynamical system in the course of time. 35 Thus it is plain tha t  K is 
also a measure of the (average) rate for the loss of information of a dynamical  
system with the evolution of time. In consequence of that  K is also a measure of 
predictability: it is inversely proportional to the length of t ime over which the 
s tate  of a chaotic dynamical system can be predicted. 

Points 2.2 (2.2.1 - 2.2.4) and 2.3 show tha t  the metaprinciple about  laws 
"similar causes lead to similar effects" is violated in two ways when chaotic 
behaviour occurs: 

(1) On the level of physical reality. This is shown in 2.2.1, 2.2.2 and 2.3 when 
K measures how chaotic a motion is. 

(2) On the epistemic level. This is shown in 2.2.3, 2.2.4 and 2.3 when K 
measures the loss of information. 36 

33 Cf. Brudno (1983) and Chirikov (these proceedings), ch. 2.4. 
34 This was shown by Pesin (1977). 
35 Cf. Farmer (1982). 
36 It  should be emphasized however that "epistemic level" does not mean here a kind 

of subjective measurement. As is clear from 2.2.3, 2.2.4 and 2.3 the measurement 
is based on objective criteria and the probability used is also not a "subjective 
interpretation" of probability. 
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2.4 The Prize-Question of  King Oscar II 

In 1885 King Oscar I I  of Sweden announced the following prize question: 37 
"For an arbi t rary  system of mass points which a t t ract  each other according 

to Newton's  laws, assuming tha t  no two points ever collide, give the coordinates 
of the individual points for all t ime as the sum of a uniformly convergent series 
whose terms are made up of known functions." 

The  prize was given to Poincar@ for his great work "Les M@thodes Nouvelles 
de la M@chanique Celeste". However he did not really solve the problem but  gave 
reasons tha t  such series do not exist i.e. that  contrary to the expectat ion these 
series of per turbat ion theory in fact diverge. 

The  prize-question was partially answered by Kolmogorov in 1954 and solved 
by his pupil Arnold in 1963. A special case of it was answered by Moser. Hence 
the name KAM-theorem. I t  gives an answer to the question whether an inte- 
grable system (with an arbi t rary  number of degrees of freedom) survives weak 
perturbation.  The theorem says that  the answer is positive and tha t  the invari- 
ance with respect to small per turbat ion or the stability is proport ional  to the 
degree of irrationality of the rotation number r of the curve of the trajectory.  
This has led to a new (weakened) concept of stability which holds for the ma- 
jori ty of the orbits; i.e. the majori ty  of solutions (for the respective differential 
equations) are quasiperiodic. 

Wha t  happens exactly to the relatively rare exceptional orbits which are 
unstable is still not enough known. This new kind of stability has a number  of 
physical applications. 

3 Question three:  

Do all laws obey the superposition principle? 

3.1 T h e  M a i n  P r i n c i p l e  o f  t h e  L i n e a r  D e s c r i p t i o n  o f  N a t u r e  

The  main principle of the linear description of nature is the superposit ion prin- 
ciple. I t  says: 

If  xl(t) is a possible solution of a law of motion (of a differential equation 
describing motion) and if x2(t) is also a possible solution of the same law then 

Xl(t) + X2(t) = Xs(t) is also a possible solution of this law. 

37 That a prize should be given for an important mathematical discovery was susggested 
to the King by the Swedish mathematician Mittag-Leffier. The special prize question 
was proposed by Weierstrass (the committee consisted of Weierstrass, Hermite and 
Mittag-Leffler). Cf. Moser (1978). Weierstrass himself was surprised about Poincar@'s 
answer because he arrived (earlier) at the opposite answer. He showed that Poincar@ 
did not in fact prove his result. Today it is knwon that for very special frequencies 
such series may in fact converge. Cf. ibid. p. 70f. For some of the historical ques- 
tions concerning that matter cf. the letters of Weierstrass to Sofia Kowalevskaya, 
Weierstrass (1993) especially the letter from 15.8.1878, ibid. p. 226ff. 
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There are famous examples in physics of laws or of the respective physical 
systems which satisfy the superposition principle. Some of them are the following: 

(1) Accustic waves 
(2) Electromagnetic phenomena (time dependent Maxwell equations) 
(3) Optical phenomena 
(4) Michelson experiment (independence of the light velocity in respect to 

moved reference frames). This experiment works only if interference (superposi- 
tion) is possible. 

(5) SchrSdinger's equation is a linear differential equation. Quantum phenom- 
ena are explained with probability amplitudes which can have superpositions. 
In fact most fundamental equations of QM are linear so far. 

3.2 Non-linearity 

Not all interesting laws satisfy the superposition principle. In general it holds 
that if the equations of motion are non-linear (cf. note 13) then the superposition 
principle does not hold. However there are a few exceptions: The solution of the 
Toda-equation which describes a chain of particles coupled together with non- 
linear springs. The solutions are so called solitons (found only in non-linear 
systems of continuum mechanics). Solitons are such solutions which describe an 
isolated bump moving at a constant speed. 

Non-linear equations are required for describing three important groups of 
phenomena: Order and structure, scale-invariance and self-similarity, chaos. The 
first two will be described briefly in 3.2.1 and 3.2.2. 

3.2.1 Order  and  S t ruc tu re  
Phenomena of order and selforganization can turn into chaotic phenomena if 
some of the parameters are changed only slightly. An example is the B~nard- 
experiment: A fluid layer heated from the bottom shows first heat conduction. 
After some time this state becomes unstable at a critical value (threshold) and 
socalled convection rolls are developed which represent a highly ordered struc- 
ture. Observe that adjacent rolls turn like gear wheels and that the elements 
of the fluid go up (the warm ones) and go down (the cold ones) periodically. 
In this process different possible modes of movements are in competition. In 
the course of time successful ones (those modes which grow most rapidly) win 
over less successful ones and enslave them. The underlying princple - called the 
"Slaving-Principle" - says that the instable modes of slowly relaxing magnitudes 
enslave the relatively stable modes of quickly relaxing magnitudes. The result is 
a drastic reduction in the number of freedoms because the boundary conditions 
limit the number of rolls. An ordered hierarchy developes. If the temperature is 
increased further up to a certain threshold (measured by the Rayleigh number 
which is proportional to the increase of the temperature) then the motion begins 
to become chaotic. 

Another example for order and structure in open dissipative systems is Kar- 
man's water turbulence which has an often observed characteristic picture emerg- 
ing if a stick is put into a stream of water. Observe that the respective systems 
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are open systems. The self organization of order and structure does not violate 
the law of entropy because this law holds in closed systems only. 

Still another interesting example of a prototype of system which satisfies the 
"Slaving Principle" is the laser. Self-organizing structures of tha t  sort have been 
studied intensively by Hermann Haken and his school. 3s 

3.2.2 Sca l e - i nva r i ance  a n d  Se l f - s imi la r i ty  
Scale-invariance means that  there is no natural scale; or in other words that  one 
cannot distinguish a system from its (by some factor) enlarged copy just  by its 
inner properties (laws). A map can be enlarged or reduced in order to be suitable. 
But  atoms cannot be enlarged or reduced and thus laws in which basic physical 
constants play a role are not scale-invariant (cf. chapter 6). As it was said above 
scMe-invariance and self-similarity can only be described by non-linear equations, 
i.e. the superposition principle does not hold. If x(t) is the solution of a non-linear 
differential equation describing a process which leads to self-similarity then there 
are values which approximate the solution fairly well but which do not depend 
anymore from the initial condition x0. And this means that  the scales can be 
changed (stretched, enlarged or contracted, reduced) by the factor ~ such that  
scale-invariance can be described by the equation x(At) = A'*x(t) where n is 
the similarity-exponent. 39 If an approximate solution is found which does not 
depend anymore on the initial condition x0 then the question is whether there is 
some (even very small) maximum (bump) in its t ime evolution. If there is then 
scale invariance (self-similarity) of the curve leads to refined repetitions which 
have structural similarity (self-similarity). These structures are called "fractals ' .  
A very simple example is Koch's curve: A line with a certain length l0 is divided 
into 3 equal parts and a convexity (bump) is constructed with two sides of 4/3 on 
the middle part. If this construction is repeated the length L= after n iterations 
is L~ = l0 �9 4~/3 ~. Fractals seem to be widespread in nature like coast lines, 
ferns, trees etc. 4~ 

The discoverer of scale-invariance in phenomena of nature seems to have been 
L.P. Kadanoff by investigating magnetism. 41 Already in school we learned that  
a perfect magnet would consist of smallest elementary magnets all of which are 
lined up in one direction. In such a magnet (which has to be at a very low tem- 
perature close to 0) the order is complete and Kadanoff's question whether it 
would look different at different scales is answered with: No. Tha t  is, it is scale- 
invariant. The same happens when the magnet is in complete discorder, i.e. when 
it is at a very high temperature such that  the elementary magnets all fluctuate 
independently of one another. At temperatures in between the magnet looks dif- 
ferent at different scales. At a low temperature the order is not complete because 
some elementary magnets are out of line. Thus increasing the scale means that  

38 Cf. Haken (1982), Haken (1984). See also the contribution of Wunderlin (these pro- 
ceedings). 

39 For further details see Groflmann (1991). 
40 Cf. Mandelbrot (1982) and Peitgen and Richter (1986). 
41 Cf. Peitgen and Richter (1986), p. 130. 
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it is more coarse and so the little fluctuations of the few elementary magnets 
are unobservable. The magnet looks like on a lower temperature.  It 's the other 
way round when the magnet is observed on high temperature.  By coarsening 
the scale the few ordered elementary magnets cannot be observed any more and 
the magnet looks like on a still higher temperature. The main point is that  scale 
transformations are related to changes in temperature.  The same magnet of a 
given temperature looks as if it were on different temperatures when viewed on 
different scales. In order not to produce wrong results we have to renormalize 
the temperature.  That  is, scale transformation forces a corresponding renormal- 
ization transformation (in this special case of temperature  otherwise of another 
magnitude). Between the two attractors (T = 0 for low temperatures and T = c~ 
for high temperatures) there is a boundary, the Curie-temperature. At tha t  tem- 
perature the magnet looks the same on all scales, i.e. its temperature  does not 
change under renormalization. And that  means that  the pat tern of the fluctu- 
ations of the elementary magnets at the Curie-temperature is self-similar. On 
the other hand if the temperature of the magnet deviates only slightly from the 
Curie-temperature this deviation may increase by iteration and lead to either 
complete order and structure or complete disorder and chaos. 

4 Q u e s t i o n  f o u r :  

Can symmetric (invariant) laws describe and predict asymmetric phenomena? 
The general answer to this question is: Yes. Symmetric laws describe ("pro- 

duce") and predict asymmetric phenomena if the initial conditions are asym- 
metric. 

Galileo understood that  the physical laws are the same in different inertial 
frames (i.e. in frames which are - relative to one another - at rest or are moving 
with uniform velocity). That  is the physical laws are invariant (symmetric) in 
respect to inertial frames. - The following is a nice passage from his dialogue 
which describes his "Gedankenexperiment": 

"Salviatus. Shut yourself up with some friend in the main cabin below decks 
on some large ship, and have with you there some flies, butterflies and other 
small flying animals. Have a large bowl of water with some fish in it; hang up 
a bottle that  empties drop by drop into a wide vessel beneath it. With the ship 
standing still, observe carefully how the little animals fly with equal speed to 
all sides of the cabin. The fish swim indifferently in all directions; the drops 
fall into the vessel beneath; and, in throwing something to your friend you need 
throw it no more strongly in one direction than another, the distances being 
equal; jumping with your feet together, you pass equal spaces in every direction. 
When you have observed all these things carefully (though there is no doubt 
tha t  when the ship is standing still everything must happen in this way), have 
the ship proceed with any speed you like, so long as the motion is uniform and 
not fluctuating this way and that.  You will discover not the least change in all 
the effects named, nor could you tell from any of them whether the ship was 
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moving or standing still . . . .  ,42 

Galilei assumed that  the orbits of the planets are circles. One of his reasons 
was probably aesthetic. The other - more important  one - might have been his 
understanding that  the laws of motion are rotationally symmetric and therefore 
allow circles as its simplest solutions even if circles are not required by the laws 
of motion. But what if he would have thought that  the orbits are exclusively 
determined by the rotationally-symmetric laws? Then he would have been fully 
justified to believe in the orbits as circles. In fact initial conditions in addition to 
the laws determine the orbits. And these initial conditions may by asymmetric, 
may break the symmetry; i.e. determine the deviation from circles to produce 
ellipses. 

Tha t  the orbit of a planet lies in one plane which contains the sun is de- 
termined by the laws, it follows from the conservation law of momentum. But 
which plane it is or better which angle this plane has in respect to, say, another 
star is not determined by the laws; i.e. is dependent on initial conditions. Tha t  
means that  the laws would allow each of the possible planes but only one as the 
realized one. Thus in some sense the rotationally symmetric laws produce the 
asymmetry (the symmetry-breaking) of just one realized plane but which one 
depends on the initial conditions. 

Other situations created by locally asymmetric initial conditions are: tha t  
our heart  is on the left side. But since there are few cases where children are 
born with the heart on the right side the biological laws do not seem to exclude 
such cases, i.e. the laws seem to be invariant in respect to right or left and the 
selection of "left" (for most cases) seems to be produced by initial conditions. 
Another example are the houses of snails which have the spiral turning in one 
direction within one species but with a few exceptions where the spiral turns 
the opposite way and the helical form of biomolecules. Similarly when polarized 
light is twisted to the right when passing through a sugar solution. In many such 
cases we do not know the exact kind of initial conditions and when and how they 
produced the asymmetry during the evolution of the universe. 

The universe or better the distribution of masses in it is also locally asym- 
metric, i.e. locally unisotrop (not rotationally symmetric) and not homogenous 
(not translationally symmetric). This is due to asymmetric initial conditions but  
according to the Cosmological Principle the universe as a whole (and in large 
parts) is homogenous and isotrop, i.e. symmetric in respect to translation and 
rotation. This principle is a hypothesis which is fairly well corroborated by the 
following two facts: (1) The temperature  of the cosmic background radiation is 
independent from the direction of the radiation. That  indicates that  at least at 
the time when the radiation began the universe was homogenous and isotrop. 
And if there were later asymmetries by asymmetric conditions they did not affect 
the temperature of the background radiation. (2) The velocities of the expansion 
of galaxies at far distance are proportional to the distance of this galaxies from 

42 Galilei (DWS) Second Day. Cf. the discussion in Berry (1978), p. 30ft. (The reference 
in Berry (p. 31) to Galileo "Dialogues concerning two new sciences" is incorrect. 
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the earth. The Cosmological Principle is an assertion of symmetry.  If it holds 
then the laws of nature are symmetr ic  in respect to translation and rotat ion and 
so is the whole universe. 43 

5 Question five: 

Are the laws of nature time-symmetric? 

5.1 The Oldest Invariance-Principle 

The invariance with respect to displacement of t ime (and of place) are the oldest 
and perhaps most important  invariance properties of physical laws and of laws 
of nature  in general. I t  seems tha t  the concept of law (of nature) is violated if 
these invariance conditions would not be satisfied. 

"This principle can be formulated, in the language of initial conditions as the 
s ta tement  tha t  the absolute position and the absolute t ime are never essential 
initial conditions. The s ta tement  tha t  absolute t ime and position are never es- 
sential initial conditions is the first and perhaps the most important  theorem of 
invariance in physics. If  it were not for it, it might have been impossible for us 
to discover laws of nature. ''4~ 

"The paradigm for symmetries of nature  is of course the group of symmetr ies  
of space and time. These are symmetries tha t  tell you tha t  the laws of nature  
don ' t  care about  how you orient your laboratory, or where you locate your lab- 
oratory, or how you set your clocks or how fast your laboratory is moving. ''45 

The  following passage points especially to the fact tha t  the relations between 
the events which are described by the laws depend only on the intervals but  
not on a point of t ime when the first event occurred. Tha t  means tha t  t ime- 
symmetr ic  laws cannot designate or select a beginning in t ime or a first event: 

"Thus the t ime displacement invariance, properly formulated, reads: the cor- 
relations between events depend only on the t ime intervals between those events; 
they do not depend on the t ime when the first of them takes place. ''46 

5.2 Philosophical Significance 

The first philosopher who seems to have realized this very clearly was Thomas  
Aquinas. In his quarrel with Bonaventura  at the university of Paris he defended 
the view tha t  the beginning in t ime of the world (universe) cannot be proved 
from universal principles (laws) of (about) this world. Because universal principle 
which have their foundation in the essence of things (of nature) abstract  from 
hic (place) et nunc (point of time): 

43 For further discussion see Genz and Decker (1991), p. 68ff. 
44 Wigner (1967), p. 4. 
45 Weinberg (1987), p. 73. 
46 Wigner (1967), p. 31. 
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"That the world has not always existed cannot be demonstratively proved 
but is held by faith alone . . . .  The reason is this: the world considered in itself 
offers no grounds for demonstrating that  it was once all new. For the principle 
for demonstrating an object is its definition. Now the specific nature of each 
and every object abstracts from the here and now, which is why universals are 
described as being everywhere and always. Hence it cannot be demonstrated that  
man or the heavens or stone did not always exist. ''47 

In this connection I want to mention that  the question whether it can be 
demonstrated that  the world has always existed or that  it has a beginning in 
(with) time - answered differently by the two competing theories of the universe 
the Steady State Theory and the Standard Theory (Big Bang) - is a question 
about the completeness of the laws of nature. Or at least of that  laws we know. A 
system of laws L about a certain part P of reality is complete if and only if every 
truth about P is provably (derivable) from L. 4s Thomas Aquinas' standpoint 
was that  the universal laws of nature (about this world) are not complete with 
respect to all questions (all truths) about this world. It is not just our insufficient 
knowledge of the laws of nature what he has in mind, but the true laws itself 
are incomplete according to him with respect to some special questions. Tha t  
means that  there are some statements about this world which are undecidable 
from the laws about this world. Or in more modern terms: the laws of nature 
are incomplete with respect to some important initial conditions. This problem 
plays an important role in the Big Bang Theory of the cosmological evolution in 
respect to (at least) the "first three minutes" .49 

It may be interesting to cite some other passages which are connected with 

4~ Thomas Aquinas (STh), I, 46.2. 
4s From results of GSdel and others we know that if P is the elementary theory of 

Boolean algebras then (the respective axiom system) L is both complete and decid- 
able, if P is First Order Predicate Logic (including relations) (the respective) L of 
it is complete but not decidable, if P is the elementary theory of dense order (the 
respective) L is not complete but decidable and if P is the arithmetic of integers (the 
respective) L is neither complete nor decidable. These and other results on complete- 
ness and decidability about areas within mathematics do not automatically imply 
results about systems of laws of a part of natural science about a part of reality. This 
has many reasons. First in natural science one is usually interested only in a finite 
number of truths about (a finite) reality and only in a finite number of consequences 
of theories (systems of laws and hypothesis). Secondly it is not clear whether the 
presuppositions made in the case of logic and mathematics for the mentioned results 
like logical closure conditions, standard form or conditions for defining provability 
etc. can be met or transmitted in a suitable way to the laws used for example in 
physics. Thus only the more general intuitive idea of completeness can be applied 
also to the laws of natural science. 

49 Cf. Weinberg (1977). That we cannot decide concerning such initial conditions (like 
the question whether the universe has a certain age) was true until very recently 
indeed when such things as the cosmic background radiation have been discovered 
which is a rather strong support for the finite age of the universe - even if we could 
not say it is an absolute proof (demonstration). 
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the one above and with basic features of the theory of relativity. Thomas  Aquinas 
says there that  place and space are bound to the material world, i.e. there is no 
absolute space independently of the world: 

"It is not enough to conceive the void as tha t  in which nothing is; you have 
to define it, as Aristotle (Phys), 208b 26) does as a space capable of yet not 
holding a body. Our contention however is tha t  before the world existed there 
was no place nor space. "5~ 

And again according to Aquinas there is no thing at (absolute) rest: 
"For our par t  we assert tha t  motion was always from the moment  subjects 

of motion began." 51 
And finally t ime began with the beginning of the world, i.e. there was no 

t ime "before" the world (universe): "The phrase about  things being created in 
the beginning of t ime means tha t  the heavens and earth were created together  
with time; it does not suggest that  the beginning of t ime was the measure of 
creation." 52 

Those are indeed interesting passages which show Thomas  Aquinas to be a 
predecessor in some basic features of the theory of relativity. The whole questio 
46 which treats  the problem of the beginning and the duration of creation shows 
tha t  Aquinas held already important  assumptions of the Theory of Relativity. 53 

5.3 D e v e l o p m e n t  in t h e  2 0 t h  C e n t u r y  

The view tha t  the laws of nature are (space and) t ime-symmetric  fits very well 
to the greek ideal of science mentioned in the introduction: the description of 
contingent and changing objects by necessary and non-changing laws. In the 
20th century the space-time symmet ry  and the idea of the similarity between 
space and t ime coordinates was especially supported by the Theory of Relativity. 
And both  theories, Relativity Theory and Quantum Theory - being the main 
theories of physics of the 20th century - are (space)-time-symmetric,i.e. they do 
not define an arrow of time. Nevertheless one was aware of the following two 
basic facts which underly both Relativity Theory and Quantum Mechanics: 

(1) the fact tha t  a (contingent) particle can move with respect to t on its 
world line only in one direction, i.e. in the direction of increasing t whereas it 
can move with respect to one of the space coordinates (x, y, z-axes) in both  
(positive and negative) directions. This fact separates in an important  sense the 
time- from the space coordinates. 

50 Thomas Aquinas (STh), 1.46.1, ad 4. 
51 Ibid. ad 5. 
52 Ibid. 46,3 ad 1. With this passage we could compare the following very modern one: 

"This approach is consistent with the view that there is no time at the most funda- 
mental level, and it is necessary to understand how time emerges from a quantum 
theory not possessing one" (Halliwell (1994), p. 3750. 

s3 It seems to me that this can be assumed in spite of the fact that there are (unrealistic 
but consistent) interpretations of General Relativity without matter like the De Sitter 
universe. 
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(2) the (partially epistemic) fact that it seems more natural to understand 
initial conditions as characterizing the state of the system (using all three space 
coordinates) at one definite instance of time than to understand initial conditions 
as characterizing the state of the system for all times but only for a single 
instance of one of the space coordinates. 54 Dependent on this understanding the 
position-momentum uncertainty is more frequently used that the time-energy 
uncertainty. 

In spite of all this there were known processes in nature and known laws which 
describe irreversibility in time: Important examples of such processes belong to 
five categories: 

(1) Thermodynamic processes (entropy increases in isolated systems) 
(2) Psychological processes (remembering the past, predicting the future) 
(3) Processes of radiation 
(4) Processes in Quantum Mechanics (CP-non-invariance and CPT-invariance) 
(5) Cosmological processes (expansion of universe and growing inhomogeneity 

of universe) 
Boltzmann and Planck were concerned with phenomena of category (1) and 

Planck in addition very much with that of category (3), especially with black 
body radiation. Both Boltzmann and Planck had difficulties to interpret the 
second law of thermodynamics, the law of entropy, but thought they could make 
it compatible with the general idea of invariance with respect to time: 

"w Der zweite Hauptsatz wird mechanisch durch die natiirlich unbeweisbare 
Annahme A erkl/irt, dag das Universum, wenn man es als mechanisches System 
auffagt, oder wenigstens ein sehr ausgedehnter, uns umgebender Tell desselben 
von einem sehr unwahrscheinlichen Zustande ausging und sich noch in einem 
solchen befindet. "~5 

"F/ir das Universum sind also beide Richtungen der Zcit ununterscheidbar, 
wie es im Raum kein Oben oder Unten gibt. Abet wie wir an einer bestimmten 
Stelle der Erdoberfi~che die Richtung gegen den Erdmittelpunkt Ms nach unten 
bezeichnen, so wird ein Lebewesen, das sich in einer bestimmten Zeitphase einer 
solchen Einzelwelt befindet, die Zeitrichtung gegen die unwahrscheinlicheren 
Zust~nde anders Ms die entgegengesetzte (erstere Ms die Vergangenheit, den 
Anfang, letztere als die Zukunft, das Ende) bezeichnen ...,56 

Also Planck tried to give a "mechanical" interpretation of the law of entropy: 
"Zermelo, however, goes farther [than I], and I think that incorrect. He be- 

lieves that the second law, considered as a law of nature, is incompatible with 
any mechanical view of nature. The problem becomes essentially different, how- 
ever, if one considers continuous matter instead of discrete mass-points like the 
molecules of gas theory. I believe and hope that a strict mechanical significance 

s4 Cf. Wigner (1972). 
55 Boltzmann (1897a), p. 579. 
56 Ibid. p. 583. For more details of Boltzmann's understanding of statistical laws com- 

pared to dynamical laws and his reasons - also against Zermelo - that the former are 
compatible with Poincar~'s recurrence theorem see Weingartner (these proceedings). 
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can be found for the second law along this path,  but the problem is obviously 
extremely difficult and requires time. ''57 

"The principle of energy conservation requires tha t  all natural  occurrences be 
analyzable ult imately into so-called conservative effects like, for example,  those 
which take place in the motion of a system of mutually at t ract ing or repelling 
material  points, or also in completely elastic media, or with electromagnetic 
waves in insulators . . . .  On the other hand, the principle of the increase of en- 
t ropy teaches that  all changes in nature proceed in one direction . . . .  From this 
opposition arises the fundamental  task of theoretical physics, the reduction of 
unidirectional change to conservative effects." 58 

I t  has to be emphasized however that  t ime irreversibility seems not neces- 
sarily to be connected with an increase of entropy. As Popper  says 59 the process 
when a stone is dropped into water and causes circular waves is hardly reversable 
and Maxwell 's example in chapter 2.1 is another case in point. 

Independently of this question it should also be mentioned tha t  statistical 
processes as listed above can be interpreted more modest ly with respect to an 
arrow of time: If  one assumes only non-recurrency one may speak of an internal 
arrow of the process without assuming irreversibility in time. 6~ 

A new situation again developed with both, further research on the cosmolog- 
ical development of the universe and recent discoveries of non-linear phenomena,  
i.e. phenomena of order, of structure of selforganization, of self-similarity and of 
chaos. The two competing main theories of cosmology are a special sign for it: 
In the Steady State Theory of Bondi and Gold the universe expands. The basic 
assumption is that  there is no designated place nor t ime in the universe, i.e. the 
universe is homogeneous and unchanging, neither geography nor history mat te rs  
as Bondi says. The process of expanding is balanced by a permanent  production 
of ma t t e r  (~  one hydrogen a tom per 6 km 3 per year) to such a degree as to keep 
the density and tempera ture  unchanged (constant). According to this theory 
the universe has no age and does not select a special point of t ime although it 
has an arrow of t ime because the permanent  production of ma t t e r  increases the 
entropy with time. The Steady State Theory however is in conflict with observa- 
tions which show tha t  the deceleration parameter  is positive, i.e. the expansion 
of the universe is slowing down, whereas according to the theory it should be 
negative. 

The  universe described by the Standard Theory (Big Bang Theory) has a cer- 
tain age (about 2 .10 l~ years) which depends on (the most recent estimation of) 
Hubble 's  constant but  does not define an arrow of time. This theory is supported 
by the astrophysical theory of star evolution where stars have ages (usually 10 l~ 
years or less) and by the decay rates of radioactive isotopes which give an age to 
the elements of about  101~ years also. The theory received great further support  

57 Planck in a letter to his friend Leo Graetz. Cited in Kuhn (1978), p. 27. 
ss Planck in a paper read to the Prussian Academy of Science in 1897. Cited in Kuhn 

(1978), p. 28. 
59 Popper (1956). 
60 Cf. ch. 5.4, Chirikov (these proceedings), ch. 2.2. 
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from the discovery of the cosmic background radiation by Penzias and Wilson 
(1965) which was predicted already by Alpher and Herman (1949). 

Both the cosmic background radiation and the new phenomena of order, 
selforganization, selfsimilarity and chaos are - according to Prigogine - strong 
cases for a "new (or revised) physics" which incorporates the arrow of time. 61 

5.4 C P T  I n v a r i a n c e  

The combination of the symmetries of charge parity and time was never violated 
in any process investigated so for, i.e. its invriance is very well confirmed. This 
does not however imply the invariance of each constituent seperately. 62 

In 1956 the first violation of parity (predicted by Lee and Yang) was con- 
firmed by C.S. Wu et al. in a cobalt-60 beta decay (decay of polarized cobalt-60 
nuclei into electrons) experiment. 

Tha t  means that  the laws of physics are not invariant in respect to an ex- 
change of a physical system (of the universe) with its mirror image. Further 
evidence is the possibility of an absolute definition of right and left by the spin 
of the antineutrino (which corresponds to a right hand screw in the direction of 
the momentum) and the neutrino (which corresponds to a left hand screw). 

In 1964 and 1967 violation of charge (also conjectured by Lee and Yang in 
1957) was established (by Christenson et al. and Bennett  et al.) by the decay 
of K ~ mesons and K ~ ions. K ~ is unstable and may decay into e -  (electron) v 
(neutrino) and H + (positive pion) or into e + (positron) v -  (antineutrino) and 
H -  (negative pion). These two different kinds of decay can be distinguished by 
magnetic separation of electrons and positrons and it can be established that  
the decay rate is different: the neutral K ~ decays faster into positrons than into 
electrons. That  means that  the experiments (nature) are not symmetrical with 
respect to the plus and minus signs of electric charge. In the CP combination 
of charge and parity the "big" violations which occur with respect to C and P 
seperately are almost balanced but  not completely. More accurately: all viola- 
tions of C and P separately (which have not been described here) are completely 
neutralized in CP except one. This is the one with neutral K ~ mesons described 
above. The respective experiments have been repeated many times with great 
care such that  the result is well corroborated. Therefore there is no complete CP 
invariance. 

On the other hand in all processes known so far the invariance of the combi- 
nation of charge, parity and time was always confirmed. This means that  there 
is a close connection among the three symmetries C, P and T. C P T  invariance 
- one of the most important symmetries of Quantum Field Theory - says that  

61 How this can be done he proposes in Prigogine and Stengers (1993), part IV and in 
Prigogine (1993). 

62 For a lucid discussion of C, P and T (and CPT) invariance see Lee (1988) first part. 
For details see Genz and Decker (1991) - a very useful book which contains a lot 
of interesting material -, Gell-Mann and Hartle (1994), and Particle Data Group 
(1990). 
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physical laws seem to be symmetr ic  with respect to the complex exchange of 
particle - anti particle, right - left and past  - future. This CPT-symmet ry  has 
remarkable consequences: I t  implies tha t  the mass of the (any)  particle must be 
the same as tha t  of its respective antiparticle. The  same holds for their lifetimes. 
Their  electric charges must have the same magnitude but opposite signs, their 
magnetic moments must agree. 

A most  striking consequence however is tha t  since CP invariance is violated 
but  C P T  invariance is not T has to outbalance the difference and therefore T-  
invariance cannot hold unrestrictedly. This is indeed a serious consequence and - 
if t rue - would have a lot of implications. On the other hand T-invariance (time- 
reversal) is hardly compatible with a dipol-momentum of elementary particles 
and it would reverse velocities and exchange initial with final states. Such a t ime 
reversal operation would be strongly non-linear in character as Wigner pointed 
out long ago. If  it could be proved tha t  the neutron has a dipol momentum then 
the laws of nature could neither be P-invariant nor T-invariant. As it has been 
said above we know from other experiments tha t  they are not P-invariant. But  
for the violation of T-invariance no direct experiments are known so far. Since 
CP invariance is violated but  C P T  invariance is not it is important  to ask for 
the basic assumptions which underly the C P T  invariance. These are mainly the 
following: 63 

(1) The particles which are not composed are finite in number. 
(2) The symmetries of Special Relativity hold (with respect to continuous 

transformations and one time and 3 space coordinates). 
(3) The laws are local. 
(4) Energies cannot be arbitrarily negative, i.e. there is a lowest energy level. 
(5) The laws of QM hold in accordance with local relativistic quantum-field 

theories in four dimensions. 
(6) The total probability of the quantum system is constant in time. 
The relatively small violation of time symmetry in elementary particle physics 

described above does not seem to be sufficient however for an explanation of time 
irreversibility in macro-physical processes; I mean processes like in thermody- 
namics and in cosmology and in the recently discovered areas of selforganization 
and chaos. 

First  of all it has to be remembered tha t  basic laws which are t ime-symmetr ic  
can "produce" asymmetric phenomena (states and processes) if there are asym- 
metric initial conditions (cf. chapter 4 above); i.e. an asymmetrical  world with 
asymmetrical  states and processes does not imply asymmetrical  laws but requires 
asymmetr ical  initial conditions. Asymmetrical  initial conditions of a very strong 
kind in fact the greatest  symmet ry  breaking - also with respect to t ime - have to 
be assumed at the beginning of the universe in all the theories which describe a 
universe finite in t ime or with a finite age since the beginning. This amounts to 
an extreme and - in the sense of the law of entropy - most  unprobable but  most  
ordered and structured singularity. Also the great religions, judaism, christianity 

63 Cf. Wess (1989) and Cenz and Decker (1991), p. 169. 
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and islam had in mind a singularity of order and structure when they spoke of 
creation. 

Secondly it should be emphasized that  basic laws which are time symmetric 
on the microscopic level are compatible with laws on the macroscopic level which 
are not time symmetric, but describe an arrow of time like the law of entropy 
(even if granted that  the reverse process is not completely impossible but very 
highly unprobable). A nice "Gedankenexperiment" for such a compatibility is 
given by Lee. 64 

Assume a number of airports with flight connections in such a way that  
between any two of these airports the number of flights going both ways along 
any route is the same. This property will stand for microscopic reversibility. Some 
of the airports may have more than one air connection (they are connected with 
more than one other airport) whereas other airports have a connection only to 
one airport (let's call such airports dead end airports). A passenger starting 
from a dead end airport (or starting from any other airport) can reach any 
other airport and can also get back to his starting airport with the same ease. 
This property stands for macroscopic reversibility. In this .case we have both 
microscopic and macroscopic reversibility. 

But suppose now we were to remove in every airport all the signs and flight 
informations, while maintaining exactly the same number of flights. A passenger 
starting from a dead end airport A will certainly reach the next airport B since 
that  is the only airport connected with A. But then - especially when assuming 
that  B has many flight connections - it will be very difficult to get further to his 
final destination, in fact it will be a mat ter  of chance. Moreover his chance to 
find back to his dead end airport A will be very small indeed. Thus in this case 
we have microscopic reversibility maintained but  macroscopic irreversibility and 
both are not in conflict. 

A necessary condition for chaotic phenomena was the sensitive dependence 
on initial conditions. This exponential dependence (see chapter 2) can be used 
as some explanation of the non-reversibility of the process. If ergodicity could 
be proved for physical systems which show chaotic behaviour it would provide a 
more direct explanation for their time-irreversibility. Since the ergodic hypothesis 
is, in a good sense, the mathematical formulation of Boltzmann's idea of the 
irreversible time evolution of a complicated physical system. If we represent the 
time evolution (of positions and velocities) of all atoms in a specific phase space 
(with a certain energy) by the movement (time evolution) of one point then the 
ergodic hypothesis can be stated thus: 

The point (describing the system) when moving through the phase space 
spends a certain time in each region (within the phase space) and this time is 
proportional to the volume of tha t  region. 

There is a proof for the ergodic hypothesis for certain chaotic phenomena 
for instance for Sinai's Billiard. For others there is no proof yet and it may 
be that  a suitable weakening of the hypothesis would still provide a reasonable 

64 Lee (1988), ch. Symmetries and Asymmetries. 
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explanation for time-irreversibility and could be provable for interesting cases of 
chaotic systems. 

6 Question six 

Are the laws of nature invariant with respect to scales? 
This invariance is also called affine-invariance or invariance with respect to 

an affine-group. An affine-group translates points into points, straight lines into 
straigth lines, planes into planes, cubes into cubes, balls into balls ... etc. Thus it 
forgets distances but  keeps intersection properties. Thus such a t ransformation 
- also called scale t ransformation - changes all lengths by the same factor a, all 
planes by a 2 and all volumes by a 3, if a > 1 or a < 1 respectively. A modern 
xeroxmachine enlarges or diminishes copies, maps are diminished representations 
of countries or cities ... etc. (cf. chapter 3.2.2). But can we enlarge things of 
nature  or art  (technical constructions) for instance can animals or trees or ships 
or buildings be twice or three t imes or hundred times as large as they are? This 
was already a question for Galileo and he answered it in the negative: 

"From what has already been demonstrated,  you can plainly see the impos- 
sibility of increasing the size of structures to vast dimensions either in ar t  or in 
nature; likewise the impossibility of building ships, palaces, or temples of enor- 
mous size in such a way tha t  their oars, yards, beams, iron-bolts, and, in short, 
all their other parts  will hold together; nor can nature produce trees of extraor- 
dinary size because the branches would break down under their own weight; so 
also it would be impossible to build up the bony structures of men, horses, or 
other animals so as to hold together and perform their normal functions if these 
animals were to be increased enormously in height; for this increase in height 
can be accomplished only by employing a material which is harder and stronger 
than  ususal, or by enlarging the size of the bones, thus changing their  shape 
until the form and appearance of the animals suggest a monstrosity. ''65 

Galileo was right to understand tha t  we cannot enlarge or diminish reality. 
Even if possible - within certain limits - for things made by technical construction 
we cannot make an enlarged or diminished copy of an atom. The radius of the 
hydrogen a tom is something fixed, it is about  5-10 -9. Also the Avogadro Number  
which is 6 ,022.  1023mo1-1. On the other hand the smallest distance between 
elementary particles in collision is 10 -18 cm seems to be a technical l imitation 
depending on the energy of our accelerators. Larger systems do not contain larger 
atoms but  just more atoms. Since the laws of nature contain such constants they 
cannot be scale-invariant. 

6.1 F u n d a m e n t a l  C o n s t a n t s  

For nonrelativistic QM three constants are very important:  Planck's constant  h 
(or for many  occasions more practical: h/2~ = 5 = 1,055.10-27g �9 cm 2 - sec-1), 

65 Galilei (DNS), p. 130 [169]. 
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the mass of the electron me = 9, 11 - 10-28g and the elementary charge of the 
electron e = 4, 81 �9 lO-l~ 1, 6 . 1 0  -19 Coulomb). With  the help 
of these three constants one can define a length (equal to the Bohr-radius tha t  
is the radius of the hydrogen a tom in its base state) and a t ime which is related 
to the energy Ee of the electron in this s tate by h/2t = Fie. 

For relativistic QM + Gravitat ion the three main constants are h, c (light- 
velocity) and G (gravitational constant), where c = 3- 101~ -1 and G = 
6, 67. lO-8cTn3g-lsec-2. With the help of these three one can define the socalled 
Planck's  scale, the Planck length Ip l  : 1, 6 .10-33r  the Planck mass r a p t  -~ 

2, 176- 10-5g and the Planck t ime t p l  = 5,  39 �9 lO-44sec. 
In addition to tha t  there are scale invariant dimensionless constants, the 

most  important  of them the mass proportion of proton (neutron) and electron: 
rap/me = 1836(m,~/me = 1838, 6) and the fine structure constant a = e2/h  �9 c -- 
1/137. 66 

There  are important  questions concerning these constants which suggest 
themselves: Wha t  is the deeper reason for these magnitudes? Wha t  is their  in- 
terrelation to other impor tant  magnitudes? Why is it so tha t  if some constants 
are relevant to some area of physics then just  by multiplication among them new 
magnitudes are produced which are again relevant for tha t  area (if not for other 
areas too)? Do these constants (for instance those of the Planck scale) belong to 
the laws i.e. are they determined by the laws or should we understand them as 
the most fundamental  initial conditions? 

6.2 Dirac's Large Numbers Hypothesis 

Especially with the first two question above Dirac was concerned in an essay of 
1937 and in later papers. 67 In his last paper  he is especially concerned with the 
dimensionless constants which are independent of the system of units one uses: 

"At present, we do not know why they should have the values they have, 
but  still one feels tha t  there must be some explanation for them and when our 
science is developed sufficiently, we shall be able to calculate them." 6s 

Dirac found another  dimensionless constant which is the ratio of the electric 
force e2/r 2 between electron and proton and the gravitational force G.rnp.me/r  2 
between electron and proton: e2/G �9 �9 me which is dimensionless and of the 
order of about  104~ This number  he compared with the age of the universe (T) 
in te rms of atomic units, for example expressed in t ime units t~ = re~c, i.e. 
te is the t ime the light needs for the distance of the diameter  of the electron. 
The  age of the universe (as known today) in t ime units te is also about  104~ 
Thus he proposed the equation e2/G �9 me" mp = T/ te  as a fundamental  equation 
expressing his socalled "Large Numbers Hypothesis". This Hypothesis s tates 
tha t  very large numbers (numerical coefficients) cannot occur without  reason in 
the basic laws of physics: 

66 For details see Genz and Decker (1991), p. 302ff. 
67 Cf. Dirac (1973). 
68 Ibid. p. 45. 
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"It involves the fundamental  assumption that  these enormous numbers  are 
connected with each other. The assumption should be extended to assert that ,  
whenever we have an enormous number turning up in nature, it should be con- 
nected to the epoch and should, therefore, vary as t varies. I will call this the 
Large Numbers  Hypothesis. ''69 

This hypotheses and more specifically the above mentioned equation which 
connects the gravitational constant with the age of the universe has severe con- 
sequences: 

(1) If  this equation is true then the laws of nature are not t ime-symmetric .  
According to Dirac G ~ 0 and G should decrease with time. A further con- 
sequence would be tha t  the law of the conservation of energy would no more 
hold. 

(2) As Dirac points out the Big Bang Theory when developed in accordance 
with the Large Numbers Hypothesis implies continuous creation of mat te r  which 
violates the law of conservation of energy. 

A consequence of (1), i.e. G ~ 0, would be tha t  the moon should depar t  
from the ear th in the course of t ime and that  some of the constants in the above 
equation - or respectively in the following transformation of it - would not be 
really constant: T ~- e 4 / (my .rap .  G .c  3). The most exact measurements concerning 
a depar ture  of the moon did not show a significant effect or, more accurately, 
are compatible with both G = 0 and the expected deviation. 7~ Fur thermore  
there are - so far - no serious indications that  e, m e ,  m p  or c change with time. 
Specifically no respective effects are known concerning spectra of far galaxies. 

Concerning the constancy of c an interesting theory has been proposed by 
August  Meessen. 71 According to this theory of space-time-quantization c = 2a �9 
E u / h ,  i.e. c is dependent on the amount of energy E u  of the whole universe (i.e. 
the positive energy represented by the mat ter  of the universe) and thus c will be 
constant  as long as the numerical value of E u  is. Here a is the ul t imate limit for 
the smallest measurable distance - called quantum-length - and not necessarily 
identical with Planck's length. 

There have been tests for other constants mentioned above. The  fine-structure 
of spectral  lines has been compared to that  of its red shift, but there was no indi- 
cation tha t  the fine-structure constant would change with time. Also tests have 
been performed for h by measuring energy E and wave length A of photons com- 
ing from "old" and "new" astronornicM sources of light. There was no indication 
tha t  h = E -  A/c would depend on the age of the source of light. 72 

The discussion of the constancy of the fundamental  constants of nature  is 
a good example of an important  question which is open to further revision. 
Although it seems so - acording to the best tests performed so far - t ha t  G, h 
and ~ (and other constants) do not change with t ime the question is not settled. 

69 Ibid. p. 46. 
70 Cf. Genz and Decker (1991), p.94, Irvine (1983) and Damour et al. (1988). 
~1 Cf. Meessen (1989). 
~2 For further details see Dyson (1972), Irvine (1983) and Norman (1986). 
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Future experiments may indeed show a dependence on time. Since such constants 
enter fundamental laws this would mean tha t  the laws of nature are not time- 
invariant (cfi chapter 5). 

6.3 L o c a l  Scale  I n v a r i a n c e  

Though the laws of nature are not scale-invariant because some important  con- 
stants  always enter a law there are local areas for which scale invariance holds. 
These are areas where those fundamental  constants mentioned above, including 
atomic distances and proportions, do not enter. An interesting example is the 
Principle of Archimedes. Within resonable limits this principle is scale invariant. 
We may enlarge the things (rigid bodies like stones or ships) to be put  into water 
(or another fluid) arbitrarily. No fundamental  constant enters this principle. The 
importance of local scale invariance for self-similarity and fractal structures has 
been pointed out already in chapter 3.2.2. The example of Kadanoff  discussed 
there shows that  in the two extreme cases of a magnet  being in complete order 
( temperature  = 0) and in complete discorder or chaos ( temperature  = co) this 
physical system (magnet) - or better: the laws govering it - are scale-invariant. 

7 Ques t ion  seven  

Are the laws of nature valid also in other universes which differ from our universe 
only with respect to initial conditions? 

Popper  (1959) proposed the following definition of natural  (physical) neces- 
sity as an essential feature of laws of nature: 

"A statement may be said to be naturally or physically necessary iff it is 
deducible from a s ta tement  function which is satisfied in all worlds tha t  differ 
from our world (if at all) only with respect to initial conditions. ''73 

Let us call the set of all the changes which do not change the laws (of nature) 
the symmet ry  group of nature. About  this symmetry  group Weinberg says: 

"It is increasingly clear tha t  the symmet ry  group of nature is the deepest 
thing tha t  we understand about  nature today ... Specifying the symmet ry  group 
of nature  may be all we need to say about  the physical world beyond the prin- 
ciples of quantum mechanics." 74 

But  how can we determine the set of all changes which leave the laws in- 
variant? This would mean to know the line of demarcation between contingent 
initial conditions and necessary and invariant laws. I t  would mean to know which 

73 Popper (1959), p. 433. 
7a Weinberg (1987), p. 73. Weinberg's definition of "symmetry group of nature" is a 

little bit different and has some subjective element in it: "point of view" and "way 
you look at nature". "The set of all these changes in point of view is called the 
symmetry group of nature." cf. ibid. p. 72 and 73. I shall try to avoid this subjective 
element and use as a preliminary version: the set of all changes which do not change 
the laws. 
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constants when changed do not affect the laws and which do; and which initial 
conditions and boundary conditions would affect the laws when changed and 
which would not. Are the laws of nature invariant with respect to a slight (dras- 
tical) change of the amount of energy (mass) of the whole universe (which is 
constant by the law of conservation of energy)? Or could we change the ratio 
of electron and proton mass slightly without changing laws? Very probably not! 
Could there be a constellation of the planets (or some star-systems) which differs 
from the one realized now (at a certain time) or in other words: Are different 
constellations of systems of stars (of our planetary system) at a certain time 
after the Big Bang compatible with the laws? 

7.1 Groups  of  Symmet r i e s  

Before I am trying to give an answer to some of these questions I shall give a 
brief list of the four most important symmetry groups. 

(1) Permutational Symmetry 
Permutational Symmetry means that "different individual" particles of the 

"same sort" are treated identical. Thus the laws and the respective physical 
world (universe) described by these laws remain the same if we interchange any 
two electrons. The same holds for protons, neutrons, neutrinos and it-mesons 
(according to the Fermi-Dirac statistics) and also for photons, r-mesons, ~- 
mesons and gravitational quanta (according to the Bose-Einstein statistics). 

(2) Continuous Space-Time Symmetries 
(a) Translation-symmetry in space. This leads to three conservation princi- 

ples of momentum. Unobservable: absolute place. 
(b) Rotation-symmetry in space. This leads to three conservation principles 

of angular momentum. Unobservable: absolute direction. 
(c) Translation-symmetry of time (i.e. delay in time makes no difference). 

This leads to the principle of conservation of energy. Unobservable: absolute 
(point of) time. This symmetry is violated to some extend because of the ex- 
panding universe and the decreasing of temperature for instance in the cosmic 
background radiation. 

(d) Translation with uniform velocity (small in relation to c) in a straight 
line relative to the reference frame. Unobservable: who is moving. 

(a) - (d) plus the assumption of Euclidean Space give the full Galilean in- 
variance (symmetry) which includes relativity in respect to inertial frames (d). 
This symmetry group (a) - (d) underlies Newton's Theory. 

Observe that condition (c) may be violated if the gravitational constant G 
(or other important constants) is not really constant but changes with time (cf. 
chapter 6.2). (d) was already discovered by Galileo (cf. chapter 4) although fully 
understood only by Newton. It is the important principle of relativity entering 
the Theory of Special Relativity. 

(e) Lorentz-invariance = Full Galilean invariance + the principle that the 
speed of light is the same in all inertial reference frames. This is the invariance 
of Special Relativity. 
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(f) Invariance of General Relativity: Physical laws are the same in all "free 
falling" (with acceleration moving) - but not rotating - systems. This is the so- 
called weak equivalence-principle though the Theory of General Relativity sat- 
isfies also the strong equivalence-principle. This principle includes experiments 
dependent on gravitation like Cavendish-experiments and says that  in all of them 
inertial mass and gravitational mass are the same. 

(3) Discrete symmetries 
(a) Charge-symmetry or particle-antiparticle symmetry. This symmetry leads 

to the conservation of charge conjugation. Unobservable: absolute sign of electric 
charge. 

This symmetry is in fact not completely valid, i.e. experiments with neutral 
kaons differentiate between + and - of electric charge (cf. chapter 5.4). 

(b) Parity or Right-Left-symmetry or Mirror-image-symmetry. Conservation: 
Parity. Unobservable: absolute right (or left). 

This symmetry is satisfied for electro-magnetic effects but not completely 
fulfilled for radioactive phenomena (decay). Cf. chapter 5.4. 

(c) Time Reversal-symmetry or Past-Future-symmetry. Conservation: Time 
reversal. Unobservable: Absolute sign (+, -) of time. 

All fundamental laws of physics (of quantum mechanics and of the theory 
of relativity) are invariant with respect to time reversM. According to Prigogine 
this is a sign that  the laws of physics are still incomplete since many processes 
are irreversible in time. 75 But time-reversal symmetry may even not hold on the 
micro level as the experiments prove CP violation (cf. chapter 5.4) 

(d) CPT-symmetry. This symmetry seems not to be violated by any processes 
known so far (cf. chapter 5.4) 

(4) Gauge symmetries 
Gauge symmetry means that  the physical world remains the same if r (repre- 

senting the wave function) is multiplied by some phase factor. A consequence of 
this symmetry is the conservation of electric charge and - when applied to other 
phases - the conservation of hypercharge baryon number and lepton number. 
Unobservable: the phase difference between two states of different charge. 

(a) Ul-symmetries. They lead to conservation laws of baryon number, lepton 
number, electric charge and hypercharge. 

(b) SU2-symmetry: Isospin symmetry. This symmetry which means an inter- 
change of proton and neutron is not completely satisfied because of the slight 
mass-difference (0,14%) of proton and neutron. 

(c) SU3-symmetry: Colour and flavour symmetry. This symmetry is the basis 
of quantum chromodynamics. 

7.2 T h e  Laws  Sa t i s fy  M o r e  t h a n  One  Univer se  

Thes i s  1: The laws of nature (known laws of nature) are valid just in our 
universe only if the following conditions are satisfied. Or in other words: If the 

75 Cf. his book (together with I. Stengers) "Das Paradox der Zeit". An English version 
is in preparation. See further Prigogine (1993). 
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laws of nature (known laws of nature) are valid just in our universe then the 
following conditions are necessary: 

(1) The laws (known laws of nature) are complete with respect to our uni- 
verse. 

(2) All laws of nature (known laws of nature) are deterministic. 

(3) Permutation change (interchange) of elementary particles of the same 
kind (see chapter 7.1 (1)) does not change the world (universe). 

(4) All sets of initial conditions compatible with the laws of nature (known 
laws of nature) occur as states (are played through) during the life time of our 
universe. 

(5) All fundamental constants (cf. chapter 6.1) are ruled by laws of nature 
(known laws of nature). 

Thesis 1 says in other words that all five conditions above are satisfied if 
the symmetry  group of nature - i.e. the set of all changes which do not change 
the laws of nature (the known laws of nature) - is the empty set. Or in other 
words: All five conditions above are satisfied if the set of all models which are 
satisfied by the laws of nature is the unit set, i.e. if there is just one model and 
this is our universe. Einstein's question was more general: Not whether the laws 
of nature allow more than one world as a model but whether God was free to 
create another world (even perhaps with other laws). 

T h e s i s  2: The above five conditions are not (all) satisfied, i.e. the laws of 
nature (the known laws of nature) are valid also in other universes which differ 
from ours. In order to support thesis 2 we have to show that  at least one of the 
above five conditions is not satisfied. 

7.2.1 Condition (1): Completeness 
As said in 5.2 a system L of laws about a certain part of reality, in this case about 
the whole universe U, is complete if every truth 76 about U is derivable from L. 
Let L be the class of the laws of nature (the known laws of nature). First of all 
and more trivially L cannot be complete concerning particular contingent truths 
about U since L does not contain initial conditions. Thus let us ask whether L +  

76 In order not to run into some logical difficulties (paradoxical situations) I do not per- 
mit here a set with the usual logical closure. That means that from a certain specific 
truth about U (say that proton and neutron have the same spin or that the fine struc- 
ture constant is 1/273) not every consequence which is allowed by logic is permitted 
in this set of truths about the world. Since logic allows a lot of redundant truths to 
be derived from one true sentence like "p or q" as a logical consequence of p (where q 
is anything whatsoever). Therefore I restrict the logical consequences by some suit- 
able relevance criterion which has been applied successfully to many different areas 
like explanation and confirmation theory, verisimilitude (theory of approximation 
to truth) quantum logic and still other areas like epistemic and deontic logic. The 
criterion eliminates redundancies and permits only most informative and compact 
consequence-elements. For more information see Weingartner (1993), Weingartner 
(1994) and Schurz and Weingartner (1987). Cf. note 45. For the general question of 
the completeness of physical laws in general see Weingartner (1996). 
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all initial conditions determining particular states of U in the past ('Ip' for short) 
is complete. 

First I think there will be considerable agreement tha t  if "laws of nature" 
means the laws of nature known so far then these laws are (even together with 
Ip) very probably not complete in the above sense. 

The doubts of Einstein concerning the completeness of the laws of physics 
known so far are expressed in his EPR-Gedankenexperiment 77 and Prigogine 
has also doubts concerning completeness because the arrow of t ime is not incor- 
porated in the most important  laws of physics of today. 7s 

Despite the incompleteness with respect to laws also Ip is incomplete. This 
is so since there is an important subset of Ip, namely the set of initial conditions 
determined at the moment of the beginning of the universe which is unknown 
to great extend and very difficult to approach scientifically (cf. condition (4) 
below). 

Second if we understand by "laws of nature" a complete set by definition 
then the answer is of course trivial. 

Third, since every t ruth about U includes also t ruths about the future of 
U, the answer of this question depends very much on the kind of the laws. If 
condition (2) is satisfied i.e. all laws are deterministic, one might think it possible 
tha t  there can be a complete set L + I v. Since (2) is probably not satisfied the 
question is open and has probably to be answered in the negative. 

7.2.2 C o n d i t i o n  (2): D e t e r m i n i s t i c  Laws  
As the phenomena of thermodynamics, quantum mechanics, radiation and the 
new discovered processes of cosmological evolution, of selforganization and of 
(certain kinds of) chaos suggest condition (2) is not satisfied. Of course this 
holds under the assumption which I accept here that  not all randomness comes 
ultimately from inherent and hidden deterministic laws. Tha t  means that  statis- 
tical laws in the realistic interpretation, i.e. describing nature, not just degrees 
of our ignorance, can be genuine laws of nature. 79 But  if this is true there are 
degrees of freedom for the development of the universe in the future. And this 
means that  more than one universe is a model for these laws. 

7.2.3 C o n d i t i o n  (3): P e r m u t a t i o n  I n v a r i a n c e  
Permutat ion change, i.e. interchange of elementary particles of the same sort does 
not change laws but  also - according to the usual understanding of a physical 
system (this system may be the whole universe) - does not change this system. 
Cf. 7.1(1). That  means that  elementary particles of the same kind are t reated 
as indistinguishable although numerically different. 

The point that  permutation change does neither change the laws nor the 
physical system (the world) has a bearing on the definition of "symmetry group 
of nature".  Because this was defined as the set of all changes which do not 

77 Cf. Einstein et al. (1935). 
7s Cf. footnote 66. 
79 Cf. Weingartner (these proceedings). 



Under What Transformations Are Laws Invariant? 81 

change laws. But under "nature" we understand usually "our" nature i.e our 
universe. Therefore in order to make sure tha t  the "symmetry  group of nature" 
selects just  our universe one would have to define this symmet ry  group as the set 
of all changes which neither change laws nor our universe. But  this restriction 
seems not to reflect adequately the character of a law of nature and so in this 
case "symmetry  group of nature" could not be used to characterize the most 
impor tant  properties of laws of nature. 

Philosophically this may seem controversial if by some principle of individua- 
tion numerically different particles are viewed as different individuals. If Leibniz's 
definition of identity (agreement in all properties) is taken literMly, then such 
particles are not identical. However taken literally this definition of identity is 
hardly applicable at all. The identity expressed by physical equations does not 
always satisfy this definition. For instance if on the right sight there are observ- 
able magnitudes (for example masses, lenghts, times) and on the left side not 
(forces) - like in Newton's Second Law of Motion. Tha t  is "for all properties" 
has to be restricted in a suitable way - for example for all physical magnitudes 
representable by real numbers. Thus a stronger principle of individuation may 
not be helpful here. The distinctions and differences go as far as discovered inner 
properties go; if new such inner properties would be discovered which hold only 
for a par t  of the particles belonging to one kind, then new differences will appear.  
Thus an interchange of two particles (of the same kind) does not lead to a dif- 
ferent world (universe). And so thesis 2 cannot be supported with permuta t ion  
change, s~ 

7.2.4 C o n d i t i o n  (4): 
In order to speak of initial conditions at all a basic assumption taken here is 
tha t  the distinction beween initial conditions and laws of nature represents at 
least some true kernel, sl Tha t  means that  not everything is ruled by laws. Only 
if this is true question 7 makes sense. 

Can we imagine now tha t  all possible initial conditions ( that  is all those 
initial conditions which are compatible with all the laws of nature) are or will 
be realized during the life t ime of the universe? I think tha t  this is not very 
probable. Even if the choice of initial conditions at the beginning of the universe 
would have been rather small - a question which is hardly decidable - as soon as 
we take statistical laws seriously (cf. condition (2)) there will be a great number  
of s tates which have not been realized because of the degrees of freedom which 
allow different states by chance. But  even if taking just  deterministic laws, with 
asymmetr ic  initial conditions asymmetr ic  effects are produced: this special plane 
of the orbit  of a planet (not tha t  it is a plane which follows from the rotationally 

so For a discussion of the problem of identity of particles see Van Fraassen (1991), 
chapters 11 and 12. 

sl Cf. the introduction and the passages cited from Wigner. The notion "initial condi- 
tion" is taken here in a rather wide sense. It includes also socalled boundary con- 
ditions but not the fundamental constants of chapter 6 which make up a seperate 
condition (5). 
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symmetric laws) is due to initial conditions and the plane could lie in a different 
angle to the one realized (recall chapter 4). 

Slight changes in the constellations of stars (and planets) seem not to violate 
laws because such changes occur since planetary motion (and probably this is 
similar with systems of stars) is to some extend chaotic, s2 

Or take charge symmetry-violation. The ratio of the decay rate could be 
slightly different (due to some change in the initial conditions) from the one 
observed (cf. chapter 5.4). Take parity: The ratio of the rates of snails having 
left screw houses to those having right screw houses (or the respective ratio of 
heart  on the left side and on the right side) could be different without affecting 
biological laws. In radioactive decay phenomena parity violation could be more 
frequently than observed. 

Such examples (which could be continued) suggest that  it is highly unprob- 
able that  all possible changes of initial conditions will be realized some time in 
this universe. That  means that  if not all initial conditions are played through 
during the life time of this universe then there are also other universes satisfying 
the laws of nature and having some of those initial conditions which are not 
realized in our universe. 

7.2.5 No Boundary 
There  is the theory of Hawking which tries to dispense with certain initial and 
boundary conditions especially with the focus on the initial conditions at the 
start  of the universe: "The boundary condition of the universe is that  it has 
no boundary. "s3 Clearly the theory of General Relativity is incomplete with 
respect to the start of the universe. It does not tell us how the universe began. 
And that  it began or that  it has a certain age it tells us only when we add 
certain parameters (for the expansion, for the density of matter  etc.) of which 
it is very difficult to have exact knowledge. According to a result of Penrose 
and Hawking: If General Relativity is correct and the universe contains as much 
mat ter  as we observe, then there must have been a Big Bang singularity. But 
this first singularity is burdened with a lot of guesswork and ignorance. It is 
therefore natural (and known from many examples in the history) to choose one 
of the following two strategies: (1) to throw out the unconvenient enti ty or (2) to 
introduce some new entity which could give an explanation for the problematic 
case(s). Examples for the latter are Plato (ideas), religion (creator), Leibniz 
(monads), Newton (forces) and Cantor (sets) etc. Examples for the former are 
strategies of elimination: Hume (causation; in fact he replaced it by a psycholgical 
entity: habit), Vienna Circle (metaphysics) etc. Hawking - it seems - has chosen 
strategy (1): Elimination of boundaries and in a sense elimination of "real" time 
by replacing it by imaginary time. It appears as a consequence of a theory of 

s2 Cf. Laskar (1994). 
sa Hawking (1988), p. 144. To avoid misunderstandings it should be mentioned that 

the "no-boundary" approach of Hawking does not mean no boundary at all. For 
example the geometries needed presuppose certain regularities which are determined 
by boundary conditions concerning the radius of the 3-sphere and the scalar field. 
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quantum gravity which uses Feynman's  idea of sum over histories (or paths) 
of particles in space t ime and - in order to avoid certain difficulties with this 
idea - introduces imaginary time. In contradistinction to the usual difference 
between the space coordinates and the t ime coordinate the distinction between 
t ime and space disappears completely if one measures t ime by using (instead of 
real) imaginary numbers: T (imaginary time) = itc.  Thus c2dt  2 becomes -dT  2 

and the difference between space and t ime disappears within ds 2. This suggests 
tha t  the important  description of nature is then a geometrical ("Euclidean") one 
and tha t  the reason for the difficulties with the first singularity would be due to 
a wrong or improper concept of t ime which has to be replaced by the concept 
of imaginary time as the proper concept of time. 

In spite of the general doubts concerning eliminations of inconvenient enti- 
ties and more specific ones like the somewhat  unnatural  disappearance of the 
difference between space and t ime coordinates (with all its consequences) and 
the mathemat ical  trick with introducing imaginary time, Hawking's theory will 
have to be judged by tests in the future, s4 As he says himself: 

"I 'd like to emphasize tha t  this idea tha t  t ime and space should be finite 
without boundary is just  a proposal: it cannot be deduced from some other prin- 
ciple. Like any other scientific theory, it may initially be put  forward for aesthetic 
or metaphysical reasons, but the real test  is whether it makes predictions tha t  
agree with observation. ''s5 

After this critical passage it is the more astonishing that  Hawking claims tha t  
"the idea tha t  space and t ime may form a closed surface without boundary also 
has profound implications for the role of God in the affairs of the universe." And 
further: "So long as the universe had a beginning [B], we could suppose it had 
a creator [C]. But if the universe is really completely self-contained, having no 
boundary or edge [S], it would have neither beginning nor end: it would simply 
be [9 B]. Wha t  place, then, for a creator?" [C? or --C?] s6 

As a short comment to tha t  I want to say two things: 
(1) If  the last passage is supposed to be an argument with the conclusion 

-~C it would be fallacious. Since B --* C, S --* ~B, S t- ~C is a logical fallacy. 
From the premisses B --* C, S --~ -~B and S one cannot draw any conclusion 
about  C (or ~ C). The conclusion --C would follow if we had instead of B ~ C 
C ~ B; but  then - despite the question of the t ruth  of S - this premiss C --, B 
is questionable too because a creator is compatible also with a creation which 
does not have a certain age or beginning. 

84 A strange consequence of an earlier proposal of Hawking (1985) was that the arrow 
of time would reverse at the maximum of expansion of the universe. However some 
of his pupils (Lyons, Page, Laflamme) found solutions which avoid that consequence 
such that the contracting phase has no reversal of time and entropy and irregularities 
increase in the expanding and contracting phases. Cfl Hawking (1994) and Laflamme 
(1994). There are also other recent theories of the inflationary universe without a 
beginning in time which do not use imaginary time. Cf. for example Linde (1990). 

s5 Hawking (1988), p. 144. 
s6 Ibid. p. 149. The letters in square brackets are mine. 
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(2) Some philosophers at the end of antiquity tried to at tack the idea of God 
as a first cause by proposing a cyclic universe, self-contained in the sense of a 
cyclic process (with only internal causation). Of such a process it does not make 
sense to cut it up somewhere (it would destroy the process) and to call one piece 
next to the cut the first cause. To this Basilius (3rd century) replied tha t  even 
if this were the right description of the universe it is always allowed (consistent) 
to ask for the explanation of the whole, i.e. to ask who instituted this circle. 

Also a very strong claim is made at the end of the book: "However, if we 
do discover a complete theory ... then we shall ... be able to take par t  in the 
discussion of the question of why it is tha t  we and the universe exist. If  we find 
the answer to that ,  it would be the ult imate t r iumph of human reason - for then 
we would know the mind of God. ''sT 

This claim is entirely different from the one cited above. In fact both  claims 
are even somewhat  inconsistent in the sense tha t  the latter presupposes a God 
(with mind) whereas the former does not only not presuppose one but suggests 
not to have a "place" for him in a universe without boundaries (forgetting the 
fact tha t  in the main religions God is transcendent with respect to the universe). 
In spite of the above inconsistency: What  if some Christian philosophers were 
right in saying tha t  since the creation (the universe) is an action of God ' s  free will 
and not a necesary outcome of his essence, knowing the creation (the universe) 
does not mean knowing his essence, which is impossible in this life (even if 
revealed texts accessible to religious belief tell us some aspects of his essence by 
analogy). Knowledge of the universe could mean then knowing him as a most  
powerful thinker and cause but  would not reveal or exhaust the s t ructure  of his 
mind. 

7.2.6 C o n d i t i o n  (5): F u n d a m e n t a l  C o n s t a n t s  
Impor tan t  questions about  the fundamental  constants have been s tated already 
in chapter 6. The one which is relevant here is whether these constants are all 
ruled and interconnected by laws. Can we change one of them without changing 
laws? This is connected with the question whether all of these constants are 
really constant or whether they change (slightly) with t ime (with the evolution 
of the universe, recall ch. 6.2). If  Dirac would be right with his Large Numbers  
Hypothesis  or in general if the fundamental  constants of nature change with t ime 
then one can imagine that  by some change of initial conditions (say the amount  
of energy of the universe is higher) the change could be  faster or slowlier. In  
this case again the laws would be satified by other universes which differ from 
ours just  by the speed of change of those constants. From all what  we know so 
far however it seems very unlikely tha t  these fundamental  constants are in some 
sense independent from the laws because they enter at least the fundamental  
laws. In this case they do not allow different universes from ours to satisfy the 
laws of nature. 

Summarizing the discussion of the 5 conditions stated above I think it is 
more likely tha t  the laws of nature  are valid also in other universes which differ 

sT Ibid. p. 185 
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from ours. They  may differ first of all because the laws of nature  known to us 
so far are not complete and so allow to be satisfied of more than one universe. 
But  even if we take a set of laws of nature which is together with the set [p of 
initial conditions complete the falsity of conditions (2) and (4) allow universes 
different from ours to satisfy the laws. 
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C o n t i n g e n c y  and F u n d a m e n t a l  Laws 
C o m m e n t  on Paul  W e i n g a r t n e r  
"Under  W h a t  Trans format ions  
A r e  Laws Invariant?" 

M. Sthckler 

Universit/it Bremen, Germany 

In the beginning of his paper  Paul Weingartner reminds us of a central idea of 
the Greek conception of science. He refers to the distinction between - universal 
laws, which do not change and are necessary in the sense tha t  they are universal 
pat terns  in such worlds we want to take into account, and - particular events, 
states of the world which are contingent in the sense that  they could be different 
without  changing the laws. Laws of nature determine the evolution of processes in 
t ime if some initial conditions are given. Since most  of the events can be explained 
in this way, only the initial conditions are contingent in a narrower sense. All 
other events could not be different given the initial conditions and the validity of 
the laws. Weingartner discusses the problem of necessity and contingency in the 
world using the distinction between laws and initial conditions. This approach 
fits well to the logical form of explanations as they are reconstructed in modern 
philosophy of science. 

Weingartner focuses on the relation between laws and initial conditions mainly 
in the light of new discoveries of physics. At the end of his stimulating paper  he 
investigates arguments which make it plausible tha t  not everything in the world 
is necessary. Tha t  means we can think about  changes in the states of the world 
which would not change the laws. Our world is not the only model of the laws of 
nature,  the laws of nature are valid also in other universes which differ from ours. 
The  thesis that  there are other universes satisfying the laws of nature and hav- 
ing some of those initial conditions which are not realized in our universe (7.2.4) 
should not be understood as maintaining the material  existence of such worlds, 
as it is postulated by the many-worlds interpretation of quantum mechanics (in 
order to avoid the reduction of the wave function) or by some astrophysicists 
(in order to explain the fine tuning of constants and initial conditions in cosmol- 
ogy). The other universes exist as our fictions or, more objectively, as solutions 
of the equations describing the laws of nature. I do agree with the conclusion 
of Weingartner developed in 7.2. Nevertheless it could be profitable to think 
about  slightly different ways to arrive at the same conclusion. So, I am going to 
comment  on the five conditions which are valid if it is not possible to change our 
world without changing the laws or, for short, if we live in a Leibnizian world. 

Condition (1): The criterion of completeness can be read in different ways. 
I am not so happy with epistemic variants of incompleteness. I t  might be the 
case tha t  we never shall know the complete set of laws and the special initial 
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conditions of the universe. But despite this lack of knowledge it could be possible 
that  every change of our world would include a change of the laws. And the other 
way round, we could know the initial conditions of the universe very well (for 
example by relying on some Anthropic Arguments) without being able to explain 
them and without having arguments that  they could not be different. By the 
way, it seems to me (and to many other people) that  quantum mechanics is 
not incomplete in the sense explicated by A. Einstein. In any case, this form 
of incompleteness is slightly different from the notion of incompleteness used 
by Weingartner. I agree that  indeterministic laws make science incomplete in 
the sense explicated in 7.2.1. Leaving this aspect to condition (3), I would say 
that ,  except for indeterminism, the present fundamental theories (quantum field 
theory and relativity) seem to be complete. I think that  most scientists would 
agree that  there are no special arguments for thesis 2 of 7.2 which refer to 
incompleteness and which are not cases of indeterminism (condition (2)) or of 
the choice of initial conditions (condition (5)) at the same time. 

Condition (2): Weingartner explicitely states that  epistemic limits to pre- 
dictability do not give reasons for the suggestion that condition (2) is not sat- 
isfied. But then only the measurement process in quantum mechanics is an ex- 
ample of an indeterministic process. In a different way of speaking, we could say 
that  the dynamic law (Schroedinger's equation) is deterministic but incomplete 
in the sense of condition (1). I propose to weaken condition (2), which should be 
restricted to fundamental laws. Even if the world is deterministic there could be 
some laws on higher levels which are indeterministic because of lack of knowl- 
edge. A complete set of deterministic fundamental laws of nature could be valid 
just in our world but nevertheless we could have some special laws which are 
indeterministic for epistemic reasons. At the end of my comment I will come 
back to the concept of 'fundamental law'. 

Condition (3): This condition requires that  an interchange of elementary 
particles of the same kind does not change the world. The idea of the argument 
seems to be the following: if the exchange of the place of two individuals in 
the world would lead to a different state of the world, we could create a twin 
universe in this way which satisfies the same laws as our universe. Consider the 
class of theories which allow different distributions of the individuals to different 
states like the distribution of similar horses to different starting places in a race. 
In all these theories, a special choice of the distribution is a part of the initial 
conditions. So far the argument of Weingartner is correct and a special case of 
condition (4). On the other side, the permutation invariance of quantum field 
theory is a rather tricky problem. I prefer the following description of the sit- 
uation: The permutations in quantum field theory refer to the number of some 
special basic states. So the permutation invariance requires that  a special con- 
vential way of bookkeeping should not influence the observables of the theory. 
If we follow quantum field theory, the elementary particles are not individuals 
like the individual described by constants in predicate logic. I prefer to represent 
them as excitation of some basic field. In this view particles are special states 
of the world and not individuals. The permutation invariance refers to a trans- 
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formation which does not change the world but which is a redescription of the 
same situation. For finding out whether the laws of nature are satisfied just  in 
our universe, we should restrict ourselves to real changes of the world and skip all 
t ransformations which just  change the form of the description (like t ransforma- 
tions of the coordinate system) 1. Of course, condition (3) can be accepted, if the 
permuta t ion  invariance is not understood in the technical sense of quantum field 
theory. Nevertheless, I would prefer to discuss this general form of permuta t ion  
invariance as a special case of choosing initial conditions (cf. condition (4)). 

Condition (4): This condition requires tha t  all sets of initial conditions com- 
patible with the laws of nature  occur (are played through) as states during the 
life t ime of a Leibnizian world. But  this formulation could be misunderstood. 
Consider Kepler 's  laws of planetary motion. We could imagine a huge set of ini- 
tial conditions which are compatible with Kepler 's  laws. But  some of the initial 
conditions (or even a considerable part  of the whole set) could be ruled out, for 
example by other laws describing the origin of planetary systems. So even in a 
Leibnizian world there could be some initial conditions of a special law which are 
not realized because they are forbidden by other laws. In any case condition (4) 
has to be restricted to such initial conditions which are compatible with all the 
laws in the world. However, such a condition is not very useful because it is very 
hard to judge whether a special initial condition is contingently not realized (but 
could be realized in another universe) or is forbidden by some removed law. I t  
sounds a little bit strange tha t  all sets of initial conditions compatible with the 
laws of nature must occur as states during the life t ime of a Leibnizian world. 
In some sense tha t  is too weak. We could have many universes which all play 
through all possible sets of initial conditions but which do so in different orders. 
I agree tha t  condition (4) is necessary for a Leibnizian world. But the interesting 
point about  the contingency of the initial conditions is that  two universes differ 
in the initial conditions at the same instant. Universes having the same set of 
events but  differing in their t ime order are different too. 

Condition (5): I agree with this condition. But  again, the choice of the funda- 
mental  constants, as far as they are not part  of fundamental laws, is an element 
of the set of initial conditions. Nevertheless, condition (5) is necessary for a 
Leibnizian world. 

Conclusion: I t  seems to me that ,  first of all, a Leibnizian world has to be 
deterministic and to exclude the existence of genuine initial conditions. I f  the 
fundamental  laws are indeterministic there are different universes which coincide 
at some start ing point. If  there are genuine initial conditions there are universes 
which differ at the start ing point (especially the deterministic ones) or branch 
at some instant (if the laws are indeterministic). 

I propose to keep (2) and (4) as necessary conditions for a Leibniz world: (1') 
The laws are deterministic. (2') There are not any genuine initial conditions. I 
suppose tha t  these two conditions together are even sufficient. 

Finally, I have to add some remarks on fundamental laws. Quite different 

1 Cf. Redhead (1975). 
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things are called 'laws' in natural science. Some of them can be deduced from 
other, more fundamental laws if some special conditions are specified (for exam- 
ple Kepler's laws can be deduced approximatively from Newton's law of gravi- 
tation). Very often the derived laws have less symmetries than the fundamental 
laws. Tha t  is the reason why the symmetry group of the world should be re- 
stricted to the fundamental laws (like that  of quantum field theory and relativ- 
ity). In a sense, such derived laws are necessary because they can be explained. 
In another sense, they are contingent because they are valid only under special 
conditions. In the order of explanation there are some laws which cannot be ex- 
plained by other laws and which I called fundamental laws. They are contingent 
in a special way because their is no explanation why we have these laws and 
not some others. We have also different sorts of initial conditions. Some of them 
are genuinely contingent: they cannot be explained. Other initial conditions (for 
example the orbit of the earth) are consequences of former processes. In a deter- 
ministic world, at least in principle, they could be explained by genuine initial 
conditions and other laws. Tha t  is the reason why I proposed to discuss the 
problem whether we live in a Leibnizian world restricting ourselves to genuine 
initial conditions and fundamental laws. In this way one gets into some trouble 
with the idea that  initial conditions are contingent and laws are necessary. I 
don ' t  see a way of solving this problem without a clear conception of 'law' and 
unfortunately I don' t  see any people having a convincing conception of 'law of 
nature' .  
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Discussion of Paul Weingartner's Paper 

Chirikov, Miller, Noyes, Schurz, Suppes, Weingartner, Wunderlin 

W u n d e r l i n :  I want to ask you why you spoke only of symmetries. For many 
examples you gave "symmetry-breaking" would be more appropriate I think. 
W e i n g a r t n e r :  I think it depends very much on the level of generality whether 
you speak of symmetry or of symmetry breaking. Most houses of snails are like 
right hand screws, very few turn the other way. If the law is that  all are right 
hand screws we may speak of a symmetry breaking in very few exceptional cases. 
But  the more plausible way to see it is that  there is a hidden symmetry: The 
law is symmetric in respect to the right or left spirale and todays preference for 
right was caused by (asymmetrical) initial conditions during the evolution. A less 
relative example is the Avogadro-number which breaks scale-symmetry. But  take 
a gas on the other hand. Macroscopically the gas is a good example of symmetry. 
But  imagine we have one film picture (snapshot) of the state (positions of all 
molecules) at a certain point of time. This picture is of course neither rotationally 
symmetric nor (with respect to parts of it) translationally symmetric. But  for 
the physicist the symmetry obtained by averaging over positions in the course 
of t ime is usually more interesting than these asymmetries. 
Suppe s :  I 'd like to ask you a question about invariance and the problem you 
mentioned about the initial conditions, the boundary conditions. Of course I 
agree with your remarks but it also seems to me that  we can think of the mat ter  
this way. We simply have the notion of models of a theory and the concept 
of the group of transformations that  leave models of a theory invariant. The  
requirement on the group of transformations is that  it carries any model of the 
theory into another model. You may want to require something else, something 
more restrictive. So, for example, the way the Galilean transformations carry any 
mechanical model into another mechanical model, but even more, carry particles 
with inertial paths into particles with inertial paths. And this gets around the 
problem of invariance of worrying about the initial conditions because the initial 
conditions are given only implicitly in the particular model. Each model will 
have some implicit boundary conditions. I only mentioned this because it's a 
way of characterizing the group of transformations, because they leave - as we 
would say intuitively - the theory invariant, which means more precisely carrying 
models into models. 
W e i n g a r t n e r :  When you say "that gets around the problem of worrying about  
the initial conditions because they are given in the particular model" then this 
doesn't  seem to me to be a solution of the problem how to divide the "world" 
into contingent initial conditions and symmetric and invariant laws (Wigner's 
problem). Putt ing the initial conditons into the model makes fixed and hidden 
assumptions out of them. But the very question is which of those assumptions 
can be changed without changing the laws. There are of course relatively easy 
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cases where your idea does not make problems. For example in the case of inertial 
systems as models we know what  can be changed without changing laws. But in 
case of fundamental laws of QM and Relativity (or the fundamental  constants 
respectively) the very problem is whether this existing universe is the only model. 
In this case all "initial conditions" would be hidden and determined by laws. I 
argued tha t  this is not so because I accept statistical laws as genuine laws and 
because - assuming tha t  the world is finite in t ime - it would be not t ime enough 
to play through all possible initial conditions. But  the question is a difficult open 
problem. 
Mi l l e r :  Can I follow up tha t  what Suppes said. I was surprised by his response  
to the question of your title because I did not understand tha t  question as an 
empirical one particularly. I did not imagine tha t  you were asking for the trans- 
formations under which our present laws are invariant, but something more philo- 
sophical and general, namely can we characterize laws in general, not knowing 
what  they are, by requiring them to be invariant under certain groups of trans- 
formations? I t  is surely not an answer to say: if it is classical mechanics then 
Galilean invariance characterizes the laws, and if it is relativistic mechanics then 
Lorentz invariance characterizes them. Tha t  sounds to me like a question of 
physics, not of philosophy. 
W e i n g a r t n e r :  The distinction, I think, which is impor tant  here is whether I 
interpret  my question in a normative sense or in a factual sense and I am not 
against  the view tha t  such questions can be interpreted in a normative sense. 
But  my view is tha t  if you think so then we have first to look at the type of 
the symmet ry  and we have first to compare what  symmet ry  we have. One has 
certainly to take into account, the status of generality of the symmet ry  and its 
main consequences, and also the presuppositions of these kinds of symmetr ies  
in order to get a more suitable "normative" concept of what  a law is. But  I am 
not too quickly proposing any normative concept here because I would fear it 
will become too idealistic. Then it 's too far away from being (at least partially) 
"discovered" by science and to some extend immune with respect to criticism 
coming from new experimental results. 
Mi l l e r :  I agree tha t  somebody who insisted that  our theories of the heavens 
must  be spherically symmetric with respect to the centre of the ear th would 
perhaps  be regarded as obscurantist with regard to the development of celestial 
mechanics. But  would you be prepared for the eventual conclusion tha t  there 
aren ' t  any laws of nature. Is that  a possibility? 
W e i n g a r t n e r :  I would at least say tha t  this is very unprobable.  And to the other 
question, I mean to the question of Galileo, I see it in a much more relative way. 
I mean the main point is this: It  is just astonishing tha t  no one, neither the 
church nor Galileo had the idea tha t  this (the point of reference of movement) 
could be relative. This is the more astonishing since Galileo understood already 
the invariance with respect to inertial reference frames as his "Gedankenexperi- 
mente" on the ship show (in his dialogue concerning two new World Systems). 
The  earth as a frame of reference is the most practical arrangement  for most of 
our practical purposes. Would you make a t ime table of a train, by relating it to 
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the sun? 
Mil le r :  Not to the earth either! 
W e i n g a r t n e r :  You see, even still a more concrete point of reference (middle 
European t ime area) we need here. I only want to point out this fact because 
it is something often forgotten. Most of the practical things, concerning which 
we need measurement must be related to the earth as a point of reference. Of 
course if you make astronomical investigations other points of reference prove to 
be more suitable, the sun, the milky way or the cosmic background radiation. In 
fact the Greeks were much closer to the idea tha t  there is no absolute point of 
reference. And also the great philosophers of the middle ages, partially because 
of religious reasons. For only God is absolute, and nothing can be absolute in 
this universe. There cannot be an absolute space or t ime since space is only 
- already according to Aristotle - made up of the distances between material  
bodies and t ime is bound to moving bodies, since t ime is the measure of moving 
things in respect to earlier and later. Thus space and t ime are bound to the 
material  moving bodies. These views hold also for Aquinas who writes in detail 
about  it in his questio 46 of his Summa Theologica. 
Mi l le r :  There is some importance given in part  of your talk to the distinction 
between laws and boundary conditions or initial conditions. Some people would 
like everything to be lawlike, with no boundary conditions, and there are others 
who would want to take the opposite view and say tha t  in a sense everything is 
boundary  conditions, though there may be local regularities. 
S u p p e s :  Of course, I want to make a comment  on tha t  since you're so anti 
these standards. For example, let 's take the most interesting, perhaps the most  
s tandard philosophical example of these transformations,  namely an old result 
of Tarski 's  tha t  you can of course characterize if you have a collection of models 
of objects, structures of any set theoretical type. You can characterize s tandard 
logic by the statements,  i.e., logical laws, tha t  remain invariant under 1 - 1 
transformations.  Now, let us take up your view. If  you take the extreme view 
of course, you would not even accept that.  But  a sceptical empiricist might still 
accept tha t  there were logical laws in tha t  sense. These are invariant. But  tha t  is 
as far as you can get with the general proofs tha t  depend on 1 - 1 transformations.  
Schurz :  There is an argument of Charles Sanders Peirce. I t  concerns the justifi- 
cation of induction. I t  says tha t  there must always be some statistical uniformi- 
ties, some statistical laws in the universe. For, even if the statistical distribution 
of the possible states of the universe were completely symmetric  - if there were, 
in other words, no statistical dependencies - this would also be some kind of sta- 
tistical law. Peirce concludes that  there must be always some uniformity in the 
universe and hence, the inductive method is justified. - I am not sure whether 
Peirce's argument  is correct. But  at least it is extremely difficult to imagine 
how a completely irregular universe could look like. There must be arbi t rary  
fluctuations all t ime ... 
Mi l le r :  I guess tha t  it would be a universe where the frequencies do not converge. 
Schurz :  But  assume the universe is finite in time. Then trivially every kind of 
event has a limiting frequency. 
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Noyes :  With regard to the relativity of rotational motion at the time of Galileo, 
the issue was raised by the Tychonic system in which the planets rotated around 
the sun but  the sun rotated around the stat ionary earth. For circular orbits, the 
two systems are kinematically indistinguishable. And the Jesuit astronomers 
were willing to sacrifice Ptolemy to this geometrical monster in order to avoid 
conflict with the biblical passages that  require a stationary earth. According to de 
Santillana's analysis in The Crime of Galileo, Galileo was genuinely afraid that  
this compromise would temporarily succeed and hence prevent the application 
of physical reasoning to the heavens. He therefore refused to even mention the 
Tychonic system in his Dialogue Concerning the Two World Systems. We now 
know from the analysis of his observational notes by Stillman Drake in Galileo, 
Pioneer Scientist, Toronto, 1990, p. 153, that  even at the geometric-kinematic 
level it is possible to prove from his observational records of the eclipses of the 
satellites of Jupiter that  both the earth and Jupiter go around the sun. But  
this was after the edict of 1616 which prohibited him from publishing anything 
that  was not hypothetical on this subject. This could, literally, have lighted the 
faggots at his feet if he had made it public! He came close enough to that  fate as it 
was. To quote Drake: "As was said at the beginning of the chapter, Galileo wrote 
of satellite eclipses only in an appendix to his sunspot letters. There alone did 
he ever assert unequivocally tha t  motion of the earth must be taken account of 
in astronomy. After 1616, no Catholic was permitted to make such an assertion; 
hence it is no wonder that  one crucial pro-Copernican argument was not included 
in Galileo's famous Dialogue of 1632." 
W e i n g a r t n e r :  I agree on that.  My point was that  the idea of the relativity of 
the point of reference didn't  occur clearly to Galileo although he understood it 
with respect to experiments on the ship. And may be if he would have been 
acquainted better  with the philosophical tradition in this respect (he criticized 
correctly Aristotle in a number of other points) it could have helped him. Like 
Mach's challenging ideas in his history of mechanics were important  for the basic 
considerations of Einstein concerning his theory of General Relativity. 
Noyes :  I want to make a point about Einstein's opinion on Mach's Principle, 
which I learned of c. 1952 thanks to correspondence with Bergmann, and through 
him with Einstein. Unfortunately the original is lost, but both Bergmann and 
Griinbaum saw the original and agree with this paraphrase of Einstein's remarks: 
"As you know the general theory is a field theory defined by differential equa- 
tions, and any such theory must be supplied with boundary conditions. In the 
early days it was believed that  the only solutions of the field equations far from 
gravitating matter  were believed to be the flat space of special relativity, or an 
overall cosmological curvature; the uniqueness of these boundary conditions was 
believed to meet this problem. Since the discovery (G6del, Taub) of solutions of 
the field equations with non-vanishing curvature everywhere in the absence of 
gravitating matter,  this argument from uniqueness no longer applies. In a sense 
this is a violation of Mach's principle. But  now that  we have come to believe 
that  space is no less real than matter,  Mach's principle has lost its force." So the 
question of Mach's Principle and whether the rotation is given once or twice, 
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I would say, is still important  and Einstein rejected it. I think many  theorists 
would like to see Mach's principle and its global implications destroyed; because 
of the evidence for non-locality in quantum mechanics I think this might be a 
mistake. 
W e i n g a r t n e r :  I agree that  this was a development of Einstein's thoughts later. 
But  Einstein himself says (in his biography in the Schilpp Volume) tha t  Mach's  
proposal does not fit in a field theory but  he points out at length tha t  Mach's  
criticism was sound and important .  
Noyes :  Oh yes, sure. 
Mi l le r :  I should like to come back to the principle that  similar causes lead to 
similar effects. Par t  of the problem is tha t  what  counts as similar to what  is usu- 
ally quite unclear. When are two initial states similar? If  similarity is indicated 
by numerical distance, then the principle fails in typical chaotic processes, such 
as the continued multiplication of a number by 10 and removal of the integral 
part.  Here rational s tart ing points lead to periodic activity, while irrational do 
not. Still, we could easily think tha t  rational numbers are more similar to each 
other than  irrational numbers, however close. 
W e i n g a r t n e r :  I agree of course tha t  this makes a difference. And moreover there 
are degrees of irrationality which play an important  role here. Non-chaotic, s table 
and predictable motion with integrability of the system has a rational rotat ion 
number  (i.e. motion frequency through perturbation).  However already in the 
case of KAM integrability where the system survives weak per turbat ion but  is 
not yet fully chaotic the rotation number has to be sufficiently irrational. 
Mil ler :  Is the principle tha t  similar causes lead to similar effects meant  to be 
testable? 
W e i n g a r t n e r :  Of  course it 's  meant  to be testable. Already Maxwell pointed out 
that  in many cases it 's satisfied but  there are also cases in which it is violated 
and he gives the counterexample of the railway. But  today we can add all cases 
of chaotic motion as counterexamples because a positive Lyapunov exponent  
measures the exponential separation of adjacent conjugate points (cf. chapter 
2.2 of my paper).  
S u p p e s :  David 's  various questions call to my mind a distinction. For example 
when we talk about  causes, we think immediately of two or more than two. One 
is when we are observing and testing by empirical observation, another concerns 
models of the theory. These two are often mixed up. We have some theoretical 
conceptions defined in classical mechanics and so we talk about  causes and we 
ask: do similar causes produce similar effects. And we are referring now not to 
things we observe but  to the models of the theory of mechanics. Then we go on 
to a notion of similarity in this model-theoretic sense. On the other hand, we 
may  believe tha t  we have no laws tha t  are absolutely true empirically because we 
can always discover exceptions. But  we still have this notion of law relative to a 
certain model or theory. And tha t  gives us a different sense. There we have a very 
natural  environment to s tudy invariance. We must distinguish between models 
of a theory in the ordinary model-theoretic sense and the empirical results of 
experiments testing the theory. 
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Ch i r ikov :  My remark is very general, not related to chaos only. I think that  
the primary law is a fundamental equation, the motion equations or whatever 
related to the model as general as possible. And then you can derive the specific 
phenomenon like chaos which is a secondary law. But it would not help you to 
understand the fundamental law unless you find some very sharp contradiction 
in the results. 
W e i n g a r t n e r :  I agree, Newton thought that  his laws are completely invariant in 
respect to changing the distances of the planets. Kepler thought that  this is not 
so because these distances express very special mathematical proportions which 
are responsible for the harmony ("Weltharmonie") of the system, for the har- 
monic and stable motion. Thus if these proportions would be changed irregular 
(chaotic) motion would be the consequence. 
Ch i r ikov :  This is an old story, now we know that  it is not a fundamental 
question. You fix the equations of the model, for example the motion equations. 
Whether  these equations are correct or not is not a problem in the studies of 
chaos. 
W e i n g a r t n e r :  This is not my claim. 
Ch i r ikov :  But, for example, what is in this equation the law and what are the 
initial conditions. This is, I agree, a fundamental question. But when we study, 
for example the motion stability all these questions are fixed. There is no choice. 
W e i n g a r t n e r :  We do not know what would happen (with the laws) if we would 
change fundamental constants like h, c or G. 
Ch i r ikov :  No, we know but principally. Technically it is difficult. You should 
distinguish between technical difficulties and the principle. 
W e i n g a r t n e r :  Of course. Think also of the purely numerical constants like the 
proportion of electron and proton mass or the fine structure constant. 
Ch i r ikov :  We know what happens if some constant would have got a different 
value. But we don' t  know, for example, whether the gravitational constant is a 
constant or is t ime dependent. 
Suppe s :  I 've then another question: you know of course the big dispute about  
geometry between Frege and Hilbert. It reminds me of this discussion about  
law. Frege, was very firm that  the only axioms of geometry are those that  are 
true. Hilbert had a very different at t i tude in terms of building a theory that  has 
models, it doesn't  necessarily mean that  the axioms of the theory are true. The 
axioms are only true in the models of the theory, but not true simpliciter. Now 
my question. I 'm not sure what your position is when you ask about laws. Are 
you thinking ~ la Frege or ~ la Hilbert? 
W e i n g a r t n e r :  Now, this is a very difficult question. I would like to say first 
that  both views, Frege's and Hilbert's, have been defended for mathematics 
not for natural science. But the laws I was dealing with were those of nature 
or of natural science. Within mathematics it seems to me that  Hilbert 's view 
fits more to the area which is constructed by mathematicians, he himself said 
from Cantor's paradise nobody should expel us. Despite the fact tha t  Hilbert 
required finitistic methods for the metatheory (metamathematics) with which 
one should prove the consistency of the theory. Frege's view on the other hand 
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fits more to the area of natural  numbers and arithmetic to which his main work in 
mathemat ics  belongs and to elementary geometry. But  when applied to natural  
science the situation is more complicated as you pointed out already. Then the 
Hilbert view tha t  a law is only true in a model fits it seems to me bet ter  to 
the working scientist who constructs models to mirror reality and changes these 
contructs if necessary because of new results. But  for a realist this picture is not 
sufficient. He thinks tha t  by revising models and laws because of controlling and 
testing them constantly with the help of new experimental results one can find 
fundamental  laws which are in fact approximations to the true laws of nature. 



T h e  S t a t u s  o f  D e t e r m i n i s m  
in a n  U n c o n t r o l l a b l e  W o r l d  

D. Miller 

University of Warwick, UK 

Abs t rac t .  The modern theory of non-linear dynamical systems [chaos] has certainly 
taught us a salutary lesson about unpredictability in classical physics. It is less obvious 
what it should have taught us about determinism. While many regard deterministic 
metaphysics as triumphantly vindicated, Popper (1982), for example, sees its only real 
support pushed unceremoniously aside. It is the burden of this paper to outline this 
problem (section 1); to challenge both the usual connection between determinism and 
predictability and the relevance of the argument leading from deterministic chaos to 
determinism (section 2); and finally to suggest that, for those who see prediction as an 
essentially probabilistic enterprise, unpredictability may promise an even more severe 
headache than is currently envisaged (section 3). It is only fair to say in advance, 
perhaps, that I am an indeterminist. This seems once more to be an unfashionable 
position, but I hope that it is still a sustainable one. 

1 D e t e r m i n i s m  &: P r e d i c t a b i l i t y  

In The Open Universe. An Argument for Indeterminism, which was written in 
the 1950s, well before the current enthusiasm for chaos began, Popper (1982) 
distinguished several varieties of determinism, in particular what he called meta- 
physical determinism and scientific determinism, together with their opposites, 
as many indeterminisms. The difference between these doctrines lies partly in 
their methodological character - -  metaphysical determinism is metaphysical, 
and scientific determinism is supposed to be scientific - -  but also in their con- 
tent. Metaphysical determinism is the simple doctrine, surely unfalsifiable by 
empirical methods, that  the future of the world is as unalterably fixed as is the 
past (p.8). Scientific determinism - -  which will be spelt out in more detail shortly 
- -  is a doctrine asserting the unrestricted predictability of the state of the world 
by scientific or rational methods - -  that  is, by deduction from universal theories 
and initial conditions (pp.29-40). Popper claimed that metaphysical determin- 
ism, though venerable, originating as it does in religious views (p.5), has little 
to recommend it - -  it is plainly in conflict with common sense - -  except that  it 
is a consequence of scientific determinism (pp.8, 27). But scientific determinism, 
he maintained, can be shown to be false, even in a world constrained by classical 
physics. It  follows that metaphysical determinism, though not refuted, deserves 
to be rejected. These arguments make no allusion to statistical theories such as 
quantum mechanics. In this I follow them. 

Everyone now agrees that  scientific determinism is untenable. But that  is 
almost the limit of the concordance. Earman (1986), p.9, for example, criticizes 
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the very appellation 'scientific determinism', on the grounds that  determinism 
always was, is now, and ever will be a metaphysical doctrine solely about the 
world, and that  questions of predictability are not relevant to its t ru th  or fal- 
sity. (We can agree with this at least to the extent of understanding the un- 
qualified terms 'determinism' and 'indeterminism' to stand for the metaphysical 
doctrines.) Earman nonetheless maintains, on other grounds, tha t  a world gov- 
erned by classical physics is nothing like as incontestably deterministic as it has 
traditionally been taken to be. Hunt (1987) too concedes that  the connection 
between the two doctrines is tenuous, but extracts from the humbling of sci- 
entific determinism - -  which he calls epistemic determinism - -  what looks like 
a verdict in favour of metaphysical determinism. His argument, shortly stated, 
is tha t  the predictive failures of classical physics can now be understood and 
forgiven, and there is no need to suppose that  Laplace's demon would share 
them. As I say, Popper draws very nearly the opposite conclusion. According 
to him the predictive successes of classical physics - -  though marvellous human 
achievements - -  can now be recognised as special cases, successes at uncharac- 
teristically straightforward prediction tasks (op.cit., section 13, and also Popper 
(1957), section 27). No conclusions about the world should be drawn from these 
successes, and metaphysical determinism stands quite unsupported, a doctrine 
at odds with empirical science, rather than at home with it. 

What  is not in dispute is that  both metaphysical determinism and metaphys- 
ical indeterminism are doctrines that  are logically and empirically unfalsifiable, 
and that  neither is refuted by the failure of scientific determinism. It  is just  this 
tha t  makes them metaphysical, and so difficult to discuss (see also Miller (1995), 
section 1). As I understand it, Popper 's  motive in developing the doctrine of sci- 
entific determinism was not to banish metaphysical determinism from rational 
discussion, but to initiate a more pointed discussion, by bringing it within the 
scope of empirical investigation. The logical and methodological situation may 
be put  like this. Metaphysical determinism is not in its own right a compo- 
nent of empirical science, and empirical evidence cannot properly be cited in its 
favour. But  a metaphysical theory may well be a component (perhaps an idle 
component,  perhaps an essential one) of a theory that  is empirically falsifiable. 
It  does not follow from its being metaphysical that  determinism cannot be a 
part  of some greater scientific theory. There are numerous consequences of sci- 
entific theories that  are themselves not empirical - -  the most obvious (though 
not the most interesting) examples are tautologies, existential statements, and 
vague uniformity principles. How is an empiricist to approach such unempirical 
elements in science? The only decent answer (Popper (1974), p. 1038, Miller 
(1994), pp. 100 is that  unfalsifiable consequences of scientific theories must be 
eliminated from science as soon as the theories from which they are derived are 
eliminated (though, of course, they can be reinstated as consequences of some 
successor theory), despite their not having themselves been subjected to em- 
pirical scrutiny. They receive a kind of courtesy status on entry similar to tha t  
bestowed on the families of diplomats. Should a diplomat be ordered home, his 
family will lose their status, and their right to remain in the country in which 



The Status of Determinism in an Uncontrollable World 105 

they are living, even if not themselves guilty of any undiplomatic activity. So it 
is for scientifically incorporated metaphysics. And if metaphysical determinism 
is derivable from some empirical scientific theory, either from classical physics or 
from some claim that  is inspired by classical physics, then it has to be rejected 
as soon as those claims are refuted. It appears to have been Popper's intention 
to promote scientific determinism as such an empirical theory. Although it is 
doubtful that  this could succeed - -  as noted below - -  it is at least true that  sci- 
entific determinism, unlike metaphysical determinism, is inconsistent with many 
real scientific theories. At one remove, that  is to say, it is open to empirical 
investigation. 

Following Popper, we may call a theory prima facie deterministic if, given 
a completely precise specification at some instant of all the initial or boundary 
conditions pertaining to a closed system within the domain of the theory, then 
for each future instant there is exactly one state description compatible with the 
theory. Classical mechanics, and other theories of classical physics are appar- 
ently prima facie deterministic (but see Earman op.cit., Chapter iii). And there 
can hardly be much doubt that  metaphysical determinism, however it is formu- 
lated, would follow from a comprehensive prima facie deterministic theory. So 
metaphysical determinism would in such a case be rightly regarded as a genuine 
metaphysical component of science. But none of the theories of classical physics, 
nor even the collection of all of them together, implies metaphysical indetermin- 
ism, simply because none of them ever actually encompassed all phenomena, or 
even seriously showed itself likely to be able to do so. There are many aspects 
of the universe, as we know, that  are not explicable in classical terms. The plain 
fact is that  metaphysical determinism was itself never a consequence of classical 
physics, which is not comprehensive (Popper (1982), p. 38). 

To the extent that  it is empirically backed, metaphysical determinism has, 
according to Popper, relied exclusively on the doctrine that  he calls scientific 
determinism. An outline is overdue. Scientific determinism is fundamentally a 
Laplacean demon constrained to testable size - -  not, as for Laplace, a superhu- 
man scientist causally detached from the physical universe yet able to predict 
in exact detail its future evolution (in particular, the longterm prospects for 
the solar system) - -  but an idealized scientist, interacting physically with the 
universe, able to predict future events not necessarily precisely but to arbitrar- 
ily severe standards of precision (this limitation is essential if we are to admit, 
as we must admit, that  some equations defy exact solution) - -  and, of course, 
accuracy. More carefully formulated, the doctrine of scientific determinism says 
that  any sharply and clearly formulated prediction task concerning a closed sys- 
tem can be carried out to any required degree of accuracy and precision by a 
combination of available scientific theory and sufficiently precisely stated initial 
or boundary conditions. Prediction tasks may be one of two types: those that  
ask for a prediction of the state of the system at some definite future instant, 
and those that ask for a (longterm or asymptotic) prediction of whether or not 
the system will ever be in a certain state (op.cit., pp.36f.). 

Now since scientific determinism is supposed to be a scientific doctrine, not 
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just another foray into metaphysics, some explanation must be given of what are 
to count within any given task as 'sufficiently precisely stated initial conditions'. 
For without this, the failure of any prediction could without embarrassment be 
blamed on a slackness in the initial evaluations. The obvious way forward is 
to ask that  once the required precision of the task is given, there should be a 
uniform way of calculating (using our theories) what degree of precision would 
be required in the initial conditions. More strongly, and more satisfactorily from 
the point of view of transforming scientific determinism into a scientific theory, 
we should require that  what can be calculated is the degree of precision required 
of the measurements that  we might have to make in order to be able to evaluate 
the initial conditions. Popper calls this requirement on measurements the strong 
form of the principle of accountability (Popper (1982), p. 13). Note further tha t  
if scientific determinism is to be an empirical thesis it by no means suffices for it 
to assert only that  the required level of precision of the measurements is open to 
calculation. It  is necessary too that  it should be physically possible to perform 
measurements of the required precision. For the postulation only of a method of 
calculation would make scientific determinism little more than a mathematical  
theory (and one that  might be false on purely mathematical grounds). I shall 
say more in the next section about this aspect of the matter  - -  that  scientific 
determinism must be understood to assert that  the needed measurements can 
practically be accomplished. 

This doctrine of scientific determinism is not a part of classical physics, but  
an independent theory conjectured in the light of classical physics. Indeed, it 
is generally agreed that  scientific determinism can be rejected without requir- 
ing any rejection of any part  of classical physics. Popper 's  own arguments in 
The Open Universe are of two kinds: there are those that  appeal to results in 
non-linear dynamics, and those that  appeal to the difficulties of self-prediction. 
Writing in the 1950s Popper did not of course take advantage of any of the 
now familiar results of the theory of chaos, such as the evolution of the time- 
dependent logistic function f ( t  + 1) = Af(t)(1 - f ( t ) )  1, but instead referred to 
a theorem published in 1898 by Hadamard concerning geodesics on surfaces of 
negative curvature (Popper (1982), section 14). In each case we are presented 
with a simple example of a process whose asymptotic behaviour, though gov- 
erned by a prima facic deterministic equation, cannot be predicted with any 
precision unless the initial conditions are given with absolute precision. Such 
processes - -  if physically realized - -  plainly contradict scientific determinism - -  
in the form in which it refers to asymptotic behaviour - -  since it is accepted 
by all interested parties that  there is no possibility of measuring values of con- 
tinuous variables with absolute precision. It is worth noting that  this objection 
to scientific determinism is not a purely formal one, though it may well appear 
to be such; for there is nothing in pure mathematics to say that  any unstable 
processes of the required type exist in nature. Nor does the objection constitute 

1 When A = 4 the function f evolves constantly from f(O) --- .75, but haphazardly 
from any initial value arbitrarily close to .75. See Miller (1994), pp. 153-155. 
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an empirical refutation of scientific determinism, for the existence of unstable 
processes is not a fact of observational experience either. All tha t  is t rue is tha t  
scientific determinism turns out to clash with science. It must accordingly be re- 
jected. Arguments of this kind are now so commonplace, and so widely accepted, 
that  I need not expatiate on them further at this point. 

Popper 's  other arguments against scientific determinism are rather different, 
and rather  harder to assess. They make no mention of precision, and if valid 
they presumably show that even absolutely precise initial measurements are 
insufficient to enable the generation of absolutely accurate predictions. The main 
idea is clear enough - -  the problem is 'whether a predictor can predict changes in 
those parts of its own environment with which it strongly interacts' (op. cir., p.73, 
emphasis removed). Popper at one point states tha t  the conclusion is tha t  ' there 
cannot be a scientist able to predict all the results of all his own predictions' 
(Popper (1982), p. 63, emphasis removed). The arguments rest in the main on 
a demonstration (op.cit., section 22; see also Popper (1950)) that  no physical 
device, however carefully prepared, can invariably predict in detail its own future 
behaviour, though it may be able to do it on some occasions, and though it may 
perhaps be able to announce at any time t what it is doing at t ime t. (For a recent 
discussion of similar issues, see Breuer (1995).) It  is required that  the device 
should issue its predictions in some standard and explicit format that  demands 
mechanical time-consuming output  (so that,  for example, the starting state of the 
device is not taken as an implicit statement of the desired prediction); and there 
are a number of other conditions imposed to ensure that  the device is a genuine 
predicting machine, and not just imaginatively interpretable as one. It is then 
argued that  the best that  the predictor can do in the way of issuing a s tatement  
of its own state at some future time is to issue it at exactly that  time, not before. 
But while I am sympathetic to the idea that  every step in the calculation will 
have to take account not only of the original task, but also of the changes in the 
conditions induced by previous steps in the calculation, I am afraid that  I do 
not find the general argument in Popper (1982) entirely convincing. It  seems to 
claim that  as there is, for each device, some self-prediction task that  cannot be 
undertaken successfully, it follows that  unqualified prediction is impossible. But  a 
predictor tha t  had the occasional blind spot, otherwise performing competently, 
would hardly suffice to demolish determinism as a doctrine based in science. For 
nothing in tha t  doctrine says that  the same method of prediction must be used 
for every task, only that  the methods used should be general methods rather 
than acts of opportunism. It may be that there is some predictor equal to any 
task, though none is equal to every task. (Everything of macroscopic dimensions 
is, no doubt, visible to some eye; but no eye can see its own retina.) I grant tha t  
if the whole universe is taken as a predictor at tempting to predict its own future 
behaviour, then it will fail in this task. But I am not persuaded that  the general 
impossibility of self-prediction - -  unlike the argument from non-linear dynamics 
- -  shows that  there is any real physica ! prediction task that  cannot be carried 
out successfully. 
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2 T w o  D o u b t f u l  C o n n e c t i o n s  

In this section I wish to challenge two lines of argument that  are implicit in 
what has gone before. One is the validity of the argument from predictability - -  
tha t  is, scientific determinism - -  to metaphysical determinism; the other is the 
relevance (the invalidity is plain) of the argument from chaos - -  that  is, scientific 
indeterminism - -  to metaphysical determinism. My challenge is in each instance 
rather obvious, and is heavily dependent on well known ideas. I should not be 
surprised if each complaint had been made in more or less the same way before. 

It  is usually supposed that  scientific determinism logically implies metaphys- 
ical determinism. Popper himself states categorically that  'metaphysical deter- 
minism is, because of its weakness, entailed by "scientific" determinism' (op. cir., 
p.8). Watkins (1974), pp. 373f explains: 'Scientific determinism superimposes 
on metaphysical determinism the epistemological claim that  there is, in prin- 
ciple, no limit to the extent to which the already fixed and determined future 
may be scientifically foreknown from our knowledge of present conditions and 
of the laws of nature . . . .  Scientific determinism is, of course, a stronger doctrine 
than metaphysical determinism, which it incorporates and stiffens.' The  logical 
connection must be conceded if, as here, metaphysical determinism is taken to 
be a simple conjunct (or axiom) in the formulation of scientific determinism. 
But  this construal seems to impose on scientific determinism exactly the kind of 
idle metaphysical baggage that  a purportedly scientific theory ought never to be 
asked to carry (see Watkins (1984), section 5.32, especially p. 205). In any case, 
the question still arises whether scientific determinism - -  understood merely 
as unconstrained predictability - -  implies metaphysical determinism. It would 
do so, of course, if it were an inconsistent doctrine, as it is sometimes claimed 
to be. But  as noted in the previous section, there is nothing in mathematics 
alone that  requires that  there should be any non-linear processes in the world 
- -  a block universe in which nothing happens is not impossible - -  and therefore 
nothing there that  requires that  there be any failure of scientific determinism. 
The  proof, moreover, of the impossibility of self-prediction, is definitely not free 
of contingent assumptions. I accept that  there may be quite weak t ruths  about  
the world that  suffice to ensure that  there exists somewhere, some time, some 
element of non-linearity and of unpredictability. All I am interested in here is 
whether scientific determinism alone, without further contingent assumptions, 
really implies the metaphysical unalterability of the world. 

It  is easy to see why the connection is thought to be there. If we can sys- 
tematically make true predictions of the behaviour of any closed system then, to 
those who are realists, the theories that  sustain those predictions must be true, 
or very nearly so; and since it seems inescapable that  the theories in question 
are prima facie deterministic, metaphysical determinism appears to follow. (See 
Hunt op. cit., p.132. This is not the old argument that,  because future contingent 
statements are devoid of t ru th  value, we cannot make true predictions about  an 
unfixed future. The role of theoretical statements in the generation of the predic- 
tions is essential.) But this way of thinking strangely neglects the fact tha t  the 
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activity of prediction is a physical activity; and tha t  even if, unrealistically, the 
making of calculations is regarded as a purely cerebral business, the making of 
measurements  required for the initial conditions is not. In other words, the ap- 
pearance of fixedness of the future of the system under s tudy may  be an artifact 
of the carrying out of the prediction task, a version of the Oedipus effect (Popper 
(1957), section 5; Popper  (1976), section 26). I t  may be tha t  by tamper ing with 
the world so as to obtain the values of the initial conditions needed for our pre- 
dictions (not to mention making the calculations) we introduce a determinacy 
tha t  was not there before - -  just as some interpreters of quantum mechanics 
say tha t  by making measurements we introduce a determinateness tha t  was not 
there before. I do not see why this should not be the general rule, why closed sys- 
tems should not generally be tamable  by the measurement  of sufficiently many  
initial conditions sufficiently precisely. To be sure, this supposition can become 
trivial if we impose no restriction on what qualifies as an act of measurement:  
I don ' t  want to allow as a measurement the t ransformation of a playful kit ten 
into a predictable system by fixing its initial position with an anaesthetic nee- 
dle. I t  has to be granted too tha t  the system that  we cast into a predictable 
s ta te  cannot be expected to behave exactly as it would have behaved had we not 
intervened. But this is true of almost all measurements.  In any case, scientific 
determinism hardly resembles a testable thesis if it asserts only the derivability 
of s ta tements  of what would have happened had the system not been prepared, 
not of s tatements of what will happen when it has been. 

Another point tha t  needs to be made is tha t  there is no (implausible, but  
not impossible) suggestion here tha t  making a series of measurements  on an 
unpredictable system would in every case convert it permanent ly  into a fully 
predictable system. Recall tha t  scientific determinism requires only measure- 
ments  tha t  allow prediction at a prescribed level of precision; and many  sys- 
tems measured exactly enough for a certain task may rapidly return to being 
unpredictable. I t  has to be admit ted tha t  measurements sufficient for making 
asymptot ic  predictions may perhaps have a quasi-permanent effect on the sys- 
t em predicted. But  this is by no means obvious. Remember  tha t  we are assuming 
at this point that  scientific determinism is true, so that  there exist no unstable 
chaotic processes. I t  may be that  accurate asymptot ic  predictions, at least of a 
qualitative kind, may be achieved without binding the system in perpetuity. 

I stress tha t  I do not take very seriously any of these possibilities. To my mind 
neither scientific determinism nor metaphysical  determinism is true. But  even if 
scientific determinism were true, it would lend much less support  to metaphysical  
determinism than is commonly supposed. 

One thing tha t  should by now be becoming plain is the extent to which 
the claims of scientific determinism require investigators to be able freely to 
prepare and measure initial conditions of a precision appropriate  to the intended 
predictions. Something like this, though something weaker, is indeed the case for 
all empirical activity when seen from a critical or falsificationist perspective: if 
we are unable to meddle in parts of the world - -  those parts  tha t  contain items 
of scientific apparatus  - -  more or less at will, then we shall unable seriously to 
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put  our theories through their paces. Substantial freedom to intervene is quite 
simply a presupposition of rational science. In other words, only if metaphysical 
determinism is false is science possible. This point may be compared with the 
argument attributed by Popper (op. cir., section 24, and Popper & Eccles (1977), 
section 20) to Epicurus, Augustine, Descartes, and Haldane to the effect that  
determinism, if true, is not susceptible to rational discussion. It cannot be too 
strongly emphasized that  these considerations do not show that  metaphysical 
determinism is false; but - -  like a thoroughgoing anti-realism - -  they do render 
the success of science inexplicable. 

Now consider again the argument from the existence of chaos. What  the ex- 
istence of processes such as the logistic function demonstrates is tha t  we are 
unable in general to prepare a deterministic system sufficiently precisely to be 
able to predict its longterm evolution. We live in a partly uncontrollable world. 
The metaphysical determinist concludes that  unpredictability is no bar to deter- 
minism. What  has to be noted, however, is that  if metaphysical determinism is 
true, then the intermediate conclusion is already inescapable: it would be mirac- 
ulous if we, mere puppets in a deterministic world, were routinely able to adjust 
our initial measurements to ensure a preordained level of precision in all our 
prediction tasks. The kind of predictability required by scientific determinism, 
tha t  is, is already excluded by metaphysical determinism, and the existence of 
chaotic systems seems not to be relevant. Metaphysical determinism implies sci- 
entific indeterminism when that  doctrine is understood to insist on our actual 
ability to undertake measurements. If metaphysical indeterminism too implied 
scientific indeterminism, then scientific indeterminism would be a logical truth.  
I have tried above to repudiate this latter implication. If I am right, we are at 
liberty to hold scientific determinism to be consistent, t rue only if the world is 
metaphysically indeterministic. 

What  the determinist's argument invoking chaos amounts to is in essentials 
this: first, a demonstration that  if determinism is true then failures in predictabil- 
ity are to be expected; and further, the assertion that  therefore there is nothing 
in our experience that  obliges us to surrender determinism. The demonstrated 
step may be admitted, but it can be established with invoking chaos. The fur- 
ther consequence is doubtful, given how much there is in our experience that  
seems to contradict determinism. But let us ignore this point. My interest here 
is in why the existence of unpredictable chaotic processes has been thought so 
gloriously to enrich the determinist 's case. One reason is that  chaotic processes 
are able to simulate random processes; and random processes have for long been 
phenomena without a clear deterministic explanation (see Miller (1995), section 
3). Yet the pseudorandomness of the outcomes of some chaotic processes must 
not be confused with their unpredictability. The simulation of randomness is a 
distinct issue, and whether it speaks for determinism or against it depends on 
how expert  the simulation is. 

The  existence of unpredictable non-linear processes has been welcomed by 
determinists, I think, only because there is an implicit presumption that  in a fully 
linear world unpredictability would disappear. This, I have argued, involves a 
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presumption of metaphysical indeterminism. I am not insinuating that  there is 
any circularity. Indeed, it is not a ground for complaint if someone assumes the 
negation of a thesis tha t  he is trying to establish. The metaphysical determinist  
may, if he wishes, assume metaphysical  indeterminism in order to refute it - -  
provided tha t  he does not assume determinism at the same time. Unfortunately, 
it is just  this that  seems to be happening. 

Wha t  we really need to learn is not only tha t  metaphysical determinism is 
compatible with unpredictability - -  which is true enough - -  but tha t  it implies 
it; not only is a thoroughgoing predictability compatible with metaphysical  in- 
determinism, it implies it. Once this connection is properly seen, the tempta t ion  
to succumb to deterministic ways of thinking should surely fade. 

3 C h a o t i c  E p i s t e m o l o g y  

In the previous two sections I have stressed tha t  scientific forecasting of the be- 
haviour of a physical system is a complex physical process, beginning with the 
measurement  of initial c o n d i t i o n s  - -  and the inevitable disturbance on the sys- 
tem being investigated - -  continuing with the expenditure of t ime and energy 
in the calculation - -  nearly always using approximation methods - -  and ending 
with the publication of a prediction. Little of this way of describing the process 
would make much sense in a deterministic world, and henceforth I shall assume 
tha t  indeterminism is correct. Wha t  we learn from non-linear dynamics is tha t  
even so, and even if the second phase of the prediction process is regarded more 
abstract ly - -  as an exact mathemat ical  t ransformation of externally provided 
initial values into predicted values - -  the prospects of unconstrained predictabil- 
ity are not good. For in the measurement  of most physical quantities complete 
precision is unattainable,  and the values obtained (and the predictions, where 
they can be made) are usually announced in the form ~ = # :t: 5 - -  here ~ stands 
for a physical quantity, and p and 5 are numerals - -  meaning at best tha t  t9 lies 
somewhere in the given interval, 5 being a characteristic of the measurement  
process. Even this oversimplifies considerably. For one of the few things tha t  
we can definitively learn from experiment and experience is tha t  few pieces of 
measurement  apparatus  yield the same value on each occasion tha t  they are 
used. All, or almost all, real measurements are infected with random errors or 
inaccuracies. It  is therefore s tandard to interpret the equation ~ = # -t- 5 to in- 
dicate the mean and standard deviation of the actual measurements of t9. This 
again is not really satisfactory, since the actual measurements themselves remain 
imprecise. I t  is scarcely helpful to confound the imprecision in the measurement  
process with the inaccuracy of the actual measurements.  (We can have impre- 
cision without inaccuracy, as when we repeatedly ask a computer to state the 
value of lr, and inaccuracy without imprecision, as when we count votes.) But 
tha t  is not my concern here. Wha t  I want to suggest is that  new possibilities 
for chaotic unpredictability emerge once we introduce a probability distribution 
over the measurements,  even if the measurement  process itself is taken to be 
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perfectly precise. This is especially so i f -  as in Bayesianism - -  the probability 
distribution is modified (via Bayes's theorem) as the evidence accumulates. 

In Chapter 8 of Miller (1994) I gave examples of distributions - -  strange 
distributions, to be sure, but  authentic ones - -  that  appeared to evolve in a 
chaotic manner. The idea used there was to characterize a distribution by a 
single parameter, and to show - -  admittedly only by computational methods - -  
tha t  arbitrarily small variations in that  parameter occasioned wild variations in 
the distribution after successive conditionalizations. For example, suppose that  
h is a hypothesis of interest, and that  Po(h) is its initial probability. Suppose 
further that  e0,. .  �9 are successive items of evidence, which may occur positively 
(et holds) or negatively (-let holds). After each item of evidence is received, the 
probability Pt(h) of h is amended by Bayesian conditionalization: 

Pt(h [ e) = Pt(e [ h)Pt(h)/Pt(e) (1) 

Pt+l(h) = Pt(h t e) (2) 

where e = =ket is either et or ~et. Equation (1) here is Bayes's theorem, which 
gives the relative probability (at stage t) of the hypothesis h on the evidence e in 
terms of the absolute probabilities Pi(h) and Pi(e) and the likelihood P~(e I h). 
Equation (2) says that,  after receipt of evidence =kei at time t, the absolute 
probability P(h) should change from Pt(h) to P~(h [ e). We suppose that  at each 
stage t the likelihood function P(e [ h) is given by the following relative of the 
logistic function. 

Pt(et I h) = 4Pt(h)(1 - Pt(h)) (3) 

Pt(et I -~h) = 1 - 4Pt(h)(1 - Pt(h)) (4) 

Note how similar the right-hand side of (3) is to the right-hand side of the equa- 
tion on p. 4. It is possible to calculate from (3) and (4) the terms P~(e) and 
Pi(-~e), and hence to calculate Pi(h I e) and Pi(h I -~e) by means of (1). In other 
words, the specification (3) and (4) determines (via (1) and (2)) the value of 
Pi+l(h) once Pi(h) is given. Using this method of updating we find that  - -  pro- 
vided that  the distribution of positive and negative items of evidence is more or 
less evenly balanced - -  the longterm behaviour of Pt(h), the probability of h at t, 
is most sensitively dependent on the initial value Po(h). For Po(h) = (2 + ~/2)/4 
it is constant, but  for initial values about 10 -8 from these fixed points it is highly 
agitated even after a few hundred items of evidence. Some pictorial illustrations 
are provided on pp.164f, of Miller (1994). 2 

2 I should like to take this opportunity to correct an unaccountable slip in my treat- 
ment in Miller (1994) of this likelihood function. Noting there (p.161) that it follows 
from the law of total probability (a consequence of (1)) and (2), (3), and (4) that 

P~(et) = 1 - 5Pt(h) + 12Pt(h) 2 - 8Pt(h) a (5) 

I added (pp.167f.) that Pt(et) clearly does not take the constant value 0.5, 
which is embarrassing given that positive and negative items of evidence are sup- 
posed to be equally distributed. But this arithmetical assertion is just false when 
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One moral drawn from these speculations (op.cit., pp.170f.) was that  we 
cannot in general rest content with probability distributions given to us ap- 
proximately rather than exactly. The exact starting point of the function P~(h) 
in the example above is crucial if we are to have any idea of its value after a 
reasonable amount of evidence has been absorbed. This is as serious a draw- 
back for Bayesians - -  who claim that  probabilities may be elicited by the crude 
mechanism of betting - -  as it is for objectivists who rely on the accumulation 
of statistics. In fact, it is much more serious, since objectivists do not care to 
update  their probability assignments in response to every new item of evidence 
(Popper (1983), section 12, Part  ii). It might be retorted, of course, tha t  the 
function Pt(h) must have an exact initial value, and that  is all that  mat ters  for 
its exact evolution; in other words, the value of Plooo(h) may not be predictable, 
but it will be there when it is needed. But given how insistently probabilistic 
considerations underwrite most epistemology - -  though not falsificationism - -  
this amounts to admitting that  prediction is sometimes impossible even in the 
presence of exactly specified empirical data. Even if the physical phenomena 
under s tudy are stable and well behaved, the prediction process may introduce 
uncontrollable fluctuations. Of course, not all likelihood functions are as irre- 
pressible as is the one defined by (3) and (4). No one suggests that  all efforts at 
systematic prediction are doomed. 
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Discuss ion  of  David  Miller's Paper  

Batterman,  Miller, Noyes, Schurz, Schuster, Strack*, Suppes, Weingartner, 
Wunderlin 

S u p p e s :  I share lots of your sceptical views. There are three points I would like 
to comment on. The very first point is simply a point of which I think I 'm right by 
a bare example - that  Popper had it wrong in emphasizing prediction so heavily 
in the sense that  if we use the classical differential equation definition of deter- 
minism, namely with sufficiently smooth forces, sufficiently smooth conditions 
and no collisions, that  then the differential equation for a system is determin- 
istic ... This is the particular example now. I want to give an example. There 
exists this beautiful example which I referred to earlier and Gerhard (Schurz) 
mentioned in his lecture of the three-body problem - this marvellous theorem 
starting with Sitnikov and then Alekseev, and there is also a good account given 
by Moser. This example, in which you can construct a random sequence within 
the three-body problem, does not depend upon any lack of definiteness in the 
initial conditions. There exists an initial condition that  will produce any random 
sequence. The precisely determined initial condition is in fact what produces it. 
It  has nothing to do with the problem of measurement and it is very important  
to recognize the existence of such problems in the heartland of mechanics. 
Mil ler :  But I think that 's  true with the logistic function too. If you star t  with 
any value one of the fixed points, you will get an evolution ... 
Suppe s :  I think you recognize the theoretical point, but in the discussion of 
mechanical examples you can emphasize the precision of measurement of initial 
conditions. And my point is that  in your mechanical example qualitatively you 
did emphasize that.  It isn't a big point, because it has been discussed before. 
But  the point is you could know the initial conditions and boundary conditions 
precisely in this example and still we have no hope of prediction, a long-term 
prediction. You could predict locally if you had measured, but you certainly 
can' t  predict the long run, because you can't  predict a random sequence which 
you are not able to produce. 
Mil ler :  Tha t  is true. 
Supp e s :  So, that 's  my first point, I don't  think that 's  a big point, you probably 
agree with this. 
Mil ler :  Yes, I did not discuss the question. I did not actually say anything about 
the problem of non-solvability. 
Supp e s :  Non-computability? 
Mil ler :  Yes, non-computability. 
S u p p e s :  I mean the point is that  you have exact initial conditions and you have 
non-computable trajectories. 

* Hans-Bernd Strack, Institut fiir Chemie und Biochemie, Salzburg, Austria. 
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Mi l l e r :  This is a pr ima facie deterministic theory, nonetheless. 
S u p p e s :  Well, I think what we are doing here is separating the existence and 
the uniqueness theorems of differential equations. Any undergraduate  in physics 
can derive a differential equation for this three-body-problem, but  the solution 
involves quite difficult mathematics.  I mean you can prove something about  
it. I think what ' s  important  is to separate the existence and uniqueness of the 
solution from the question: is the solution computable? 
Mi l l e r :  Yes. 
S u p p e s :  So I don ' t  think you really disagree much about  that .  My second com- 
ment  is historical and I am disappointed tha t  you didn ' t  discuss Kant  a bit 
more on this metaphysical determinism, given his entanglement with it and the 
many  useful things he has to say about  it. Tha t ' s  simply a historical remark, 
because in a way if I had to choose my philosophers - though I have great af- 
fection for Karl  -, I think Kant  got deeper into the problem in many respects. 
My third remark is about  the Bayesian example. I just  want  to illustrate. Let ' s  
take the case of a coin with unknown probability: So we want to know the true 
probabil i ty - i t 's  maybe biased. In the real Bayesian approach we could take on 
the zero-one interval a ~-distribution for the prior. You take a distribution, a 
smooth  function - a 13-distribution will be fine, on the zero-one-interval, - which 
expresses my prior as to what  the true probabili ty distribution of the coin is. 
Let ' s  say that  all unindoctrinated Bayesians take such a prior, you are pre t ty  
confident. But if you say, well I am doctrinated, you still have smooth functions 
on the interval, then it is a good question: can you construct such a thing as in 
your example of diverging distributions? I t  is a mat ter  of study, it is not clear 
in this kind of case that  you could. I am not suggesting by the way tha t  you 
are not right about  this. I think you are absolutely correct tha t  it is a mistake 
if you think you can get divergence in the kind of example you gave. I just  want 
to point out tha t  there are ways of safeguarding convergence in many  cases in a 
s tandard  approach. 
Mi l l e r :  I don ' t  want to deny tha t  at all. I think it 's  quite clear tha t  there are 
cases where convergence is a fact and is observed. 
S u p p e s :  But  all you have is this smoothness assumption of a distribution rather  
than  a point prior. 
Mi l le r :  All I am trying to do is to provoke a certain scepticism. 
S u p p e s :  Oh, no, no. I do not disagree with this. I do want to protect  my 
Bayesian. 
B a t t e r m a n :  I 've got a question about Bayes' theorem too. I did not understand 
the way you set up the logistic map. Wha t  role did Bayes' theorem play? How 
was it used for up-dating probabilities in this case? 
Mi l l e r :  The updating is done by Bayes' theorem. There was an initial probabil i ty 
for the hypothesis. And then I gave a rather  bizarre likelihood function tha t  was 
unchanged throughout entire evolution. The question was: Can I actually make 
this sequence behave like the logistic function and it turned out: yes I can. 
B a t t e r m a n :  But didn' t  de Finett i  prove a theorem to the effect tha t  if one's 
prior probabili ty assignments are coherent, then if you have two different people 
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who assign different initial priors to the same hypothesis, there will be conver- 
gence in probability assignments as evidence is accumulated? 
Schurz :  De Finetti  proved it under the condition that  the probability function 
is symmetric and regular. 
Suppes :  Savage also discusses that.  I mean, I agree with him. This example 
does not satisfy the hypothesis under which de Finetti  proved his theorem. 
B a t t e r m a n :  I mean exactly what 's  not satisfied? Is it just the fact that  there 
are not symmetric or the fact that  there are different priors in this case? 
Suppe s :  I stick to a very simple example, a real trivial example that  does not 
satisfy de Finetti  and there is no convergence. Suppose you believe tha t  Elvis 
Presley is still alive - you assign probability one, tha t  he is alive, I assign prob- 
ability zero. Whatever evidence is produced, we are not going to converge. 
Mil ler :  That ' s  not regular. 
Suppes :  That ' s  not regular. He [Miller] gave a more sophisticated example. 
Schurz :  But  under certain conditions it will converge - that  has been proved by 
de Finetti. 
Mi l ler :  The problem is that  most Bayesian philosophers think - or write as if 
they think - that  de Finetti or somebody proved that  in all interesting cases you 
have convergence. 
Suppe s :  Remember, de Finetti 's  representation theorem has very strong as- 
sumptions in terms of exchangeable events. For the s tudy of most events in time 
you don ' t  have exchangeability. 
Schurz :  That  was what I meant with symmetric. 
S t rack :  If I understood your summary correctly you wanted to exclude predic- 
tion by accident - you wanted to have deterministic theories just  with a rational 
means of prediction. Now I wonder where the borderline is for you, if just for the 
sake of the argument you would say that  theories are schemes which link per- 
ceptions with predictions some kind. And then if you also believe that  theories 
are selected - basically selected - for the partial success they have had then you 
select theories which repeatedly have been successful in this limited sense. Now, 
that  may just  be an accident or at first it certainly is an accident. Now, where 
is the borderline for these theories to become rational in your sense, basically at 
first they are all accidental. 
Mi l ler :  Where is the borderline? I shall t ry  to draw a border for you. Prediction 
has to be systematic. Whatever theory we use, the theory has to be something 
that  is stated in advance. It is not easy to make useful predictions from a theory 
in a systematic way - unless you take an inconsistent theory, from which you can 
predict everything. Actually getting a theory that  will produce any predictions 
at all tha t  is no easy matter.  What  I wanted to rule out was the sort of case 
where we might think that  a prediction is made successfully, but it is really just  
pulled out of the hat. 
W u n d e r l i n :  A technical question: You have written this equation for the prob- 
abilities - one writes such equations of probabilities which are each time nor- 
malizable. Now I don' t  see how this fact is guaranteed when you use the logistic 
equation for the time development of such probability. 



118 Batterman, Miller, Noyes, Schurz, Schuster, et al. 

Mi l le r :  No, Bayes's theorem controls the t ime development. 
W u n d e r l i n :  But  on the other hand this equation is still restrictive. In physics 
we call it detailed balance. It  is a special condition to the probabilities if t ime is 
involved - this means, if you put  this p(e) to the left side, the left side is the t ime 
forward part,  and the right side is the t ime backward part.  If  both are equal then 
this is a very special condition, so I am not sure whether this holds generally. 
Schurz :  May I mention tha t  in this equation there is no t ime development 
involved. These (e and h) are propositions, just  propositions without  t ime de- 
pendence involved. 
S u p p e s :  You start  at a given time. Then you simply get new additional evi- 
dence updating your posterior p(h/e). [to Miller]: I have some more comments,  
I think you are too quick on accidental prediction. I want to make a couple of 
remarks. First of course if we took your horizon of rational thought  literally, 
then of course the Bayesian is doing accidental predicting because the Bayesian 
has the following kind of scheme: he uses a theory T in making a prediction. But  
then it is not quite clear what  the circumstances are. So he uses his judgement  
- as the Bayesian say - which is not theoretically given, but is based on expe- 
rience, given in a non-cognitive way to make the final prediction. This is not 
just  an imaginary example we are talking about. This is the way a real weather 
forecaster can make predictions. They use the information and the theory, but  
then they make a final adjustment  in terms of their experience. I would say Sir 
Karl  is too rationalistic. There is too much of experience that  we really count 
upon digesting in a non-theoretical way. I mean, we cannot give an explicit ver- 
bal account of the way in which we digest all this experience. But that  means 
tha t  if you make your scientific predictions in tha t  framework, in tha t  Bayesian 
framework, then there is a clear accidental component  in your sense, namely, 
the predictions are tempered by judgement and not simply by pure cMculation. 
So, for what  I would call a typical Bayesian, there is a mixture of calculation 
tha t  is done by theory and then there is a final component  of judgement  tha t  
corresponds to your idea of accidental. We talked about  weather forecasting - 
tha t  is a practical matter .  Let 's  take a different kind of example. Take any re- 
ally complicated experiment in physics. Then there is an enormous amount  of 
appara tus  involved, and the s tandard comment  of the technicians and engineers 
is: "God help us. The physicists don ' t  understand this equipment." They simply 
t rust  what  they were told by the engineers and how it 's going to work. I t  is an 
enormous mat ter  of judgment.  So if you are experienced to work in these fields, 
you have a nonverbal evaluation of the trustworthiness of your technicians. This 
also applies to computer work. You don ' t  have anything like a rational analysis 
in the ordinary sense of ratio. The meaning of rational here being tha t  you could 
give a theoretically based verbal account of the basis of your prediction. Now, 
in tha t  sense even in scientific work, you don ' t  make rational predictions. There 
are too many unverbalized adjustments  made in the experiment.s. But  i t 's  even 
more rational, in the sense of practical success. So tha t  may be what  you might 
call the 'extended'  or 'weak'  sense of rational. 
Mi l le r :  But that  seems to me a doctrine, tha t  is very artificial indeed. The 
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success of a prediction depends on very many different ways and circumstances. 
S u p p e s :  Tha t  is also what  the Bayesian would say. 
Noyes :  I just  want to support  Pat.  Actually in my own experience in physics, it is 
very important  to develop a sense of judgment  as to what laboratory results you 
are going to t rust  and which you are not. I 've  been in the data  analysis business 
for a long time. For several years I was engaged in proton-proton scattering 
analysis aimed at obtaining theoretical meaningful and trustworthy parameters .  
I found that  you cannot just  uncritically accept what is published in the main 
stream, refereed literature. You learn that  results from some laboratories, and 
some experimental  teams hold up and tha t  others do not. Of course you cannot  
simply throw out the points in a da ta  set which are so far from the mean tha t  
they make no sense. Wha t  you have to do is to throw out a whole experiment,  
or preferably simply ignore some sets of published data  because you distrust  the 
team, or the laboratory or the method. This is often difficult or embarrassing to 
defend publicly. 
Mi l le r :  But  I think tha t  is a rational process. 
Noyes :  Well, a mat ter  of judgment.  I t  is not a calculated process. 
Schus t e r :  I feel a little bit uncomfortable in this discussion now, because I think 
we assume and we strictly assume tha t  the good laboratories give us the results 
we trust. They work on a rational basis. So we just  have some experience. So we 
bet ter  not t rust  some of them because they do not work in a rational way. And 
we do not assume tha t  the bet ter  laboratories just have the bet ter  intuition and 
the bet ter  guessing people, or do you? 
Mil le r :  No, they do their error correction before they submit their results for 
publication rather than  afterwards. 
S u p p e s :  I want to comment  on that .  I have a marvellous example in my first 
experiment. Recently I worked with a very smar t  guy from China. He had his 
Ph.D. in mechanical engineering. - I have a long experience, 40 years of people 
working for me who have a lot of technical experience. This guy exemplified 
rationality a 100% and he had experience. He could read the manuals, could 
understand them, etc. Wha t  he lacked was to challenge data, to explicate what  
is meant  by them. His judgement  was based upon experience as a technician 
who cannot tell you what  is the basis of his judgement.  But because he has had 
a great deal of experience, he could actually make good judgements and I knew 
that  I could t rust  them. But  he could not give a verbal account. And I want to 
make this comment.  I t  seems to me tha t  though we can use the word ' ra t ional '  
in a nonstandard way - if you talk about  such non-verbal judgment  as rational 
- but the real problem is to explicate what  its components are. Wha t  is in fact 
a rational laboratory technician in this sense? 
Schus t e r :  I have an argument for that ,  and tha t  is reproducibility. I have a 
marvellous example. There was one laboratory with one technician and they 
were able to do an experiment tha t  did not work in any other laboratory for a 
very long time. So you could still argue, that  this particular technician does not 
know what  she does - but she is fading somehow. But  then it turned out tha t  
the intuition to t rust  this particular technician was correct because after all one 
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learned how to do it and then it was reproducible. 
S u p p e s :  Reproducible by other people? 
S c h u s t e r :  Yes. After one learned what she did and she did it correctly. But  
others just  did it not correctly. 
S u p p e s :  I want to comment  on your example which I agree with but  I also 
want to make the following point. You can have criteria of rationality in terms 
of success. But  I want to emphasize that  there is a long tradition in analyzing 
rationality tha t  tried to go deeper than this. And what  we don' t  have is - to s tar t  
with your example of reproducibility - we do not have a really sophisticated body  
of knowledge about  these laboratory experiments or about similar experience, 
tha t  constitutes what  one would call a general theory of rationality. W h a t  we 
have are important  and well documented observations of the concept. But  what  
I am saying to David, what  is missing is: what are the characteristics of rational 
law, of rational behavior? 
Mi l le r :  My answer is tha t  I think tha t  there is no such thing. The idea of 
rat ionali ty is somehow a procedure, an appropriate procedure ... 
S u p p e s :  In this case you are more sceptical than I am. A very good example 
is this: There is a great deal known about  efficient ways of training animals. 
There  is a lot known about  how to do a bet ter  job of training nurses or training 
doctors. 
Mi l le r :  But tha t  is making it irrational. Training here seems to mean doing 
things without being constantly aware of what  the effect of what  one is doing is, 
and how one may be incorrect, without looking for mistakes. 
S u p p e s :  Oh, tha t  is really nonsense. I really must disagree with tha t  in an 
extreme way. I want to give you another example. We are running, as I told 
you, an educational program for very gifted students. We are teaching them 
physics at  an early age. We have a home laboratory developed for them. Some 
of these very bright students - because we did not give them earlier training - 
could not understand how to use a soldering iron. They did all the problems 
with great elan, but  they could not touch soldering. If  you think tha t  we don ' t  
know something about  how to train people, you are wrong. Training is a rational 
procedure. Tha t  is what  I mean by rational. And the problem is to have a theory 
of practice, where the theory of practice is, for example, a theory of how to do the 
job of training technicians or training doctors. I mean the thing about  doctors 
is tha t  they cannot verbalize accurately what they can do well. But  they can get 
very good under proper regimes at actual diagnosis. And your verbal criterion 
of rationality - the doctors don ' t  satisfy. But they are very good on the basis of 
the training tha t  can be provided. 
Schurz :  I think the rationality problem is a difficult problem where you have to 
weigh several aspects - difficult to decide. Maybe we go on to Paul 's  remark.  
W e i n g a r t n e r :  Determinism can be characterized in a twofold way. Either we 
characterize laws in a certain way and call them deterministic, because they have 
this and tha t  property. Or we apply determinism to nature and ask whether  the 
s tructure of nature is deterministic. I prefer the first sense because I think it is 
difficult to define such a thing as the structure of nature, but I think it has good 
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sense to say that  if laws have certain features and if the laws are successful, then 
we call these laws the deterministic laws. Now, you spoke about refutation of 
determinism. I would say what the research on chaos shows us is that  we have 
to revise our earlier view on laws. We have to revise this view, because this view 
was that  we have differential equations and if there was some slight change in the 
initial conditions or some perturbation, the view was that  these can be handled 
by the calculus of mistakes or by perturbation theory to any suitable degree of 
accuracy. And this I think is now challenged, this is really new. For very small 
deviations in the initial conditions may lead to chaotic behaviour which is no 
more predictable with the help of these laws. We have to revise the concept of 
law. Would you agree? 
Mil ler :  I do not quite understand what the sensitivity to initial conditions has 
to do with the concept of law. Which kind of consequences do you want to draw 
for the concept of law? 
W e i n g a r t n e r :  If you ask what essential features do laws have, fundamental laws, 
then you have the problem of either still upholding the dynamic deterministic 
laws as the necessary fundamental underlying laws and explain chaotic motion 
and its unpredictability with the contingency and chance-like behaviour of initial 
conditions - determinism wouldn't  be refuted in this case - or to t ry to find a 
revised concept of law which is even at the fundamental level not as strict as 
we usually understand dynamical deterministic laws and allows so to speak a 
statistical law as a part of a dynamical law. 
Mil ler :  I should prefer to say that  we have the same concept of law as before. 
We just discovered new things about its extension. 
W e i n g a r t n e r :  It  seems to me, that  means that we get either to a new concept 
of law, to a revised concept, or we put the "new things" into the range of initial 
conditions. 
Mil ler :  No, we discover new things about the same old concept, and eliminate 
some of the mistaken ideas we have about it. One of these mistaken ideas may 
perhaps be the belief in statistical - or even probabilistic - laws, which may have 
to give way to deterministic laws governing propensities. 
S c h u r z  [to Miller]: I agree with you, but I want to connect it with the debate 
on determinism and indeterminism - to connect it with some practically relevant 
aspects concerning the controllability of the world. In the debate in the 1920ies 
on determinism and indeterminism in quantum mechanics, people debated on 
this question with the idea that  only if the world is indeterministic then there is 
a place of free will in it. Now we know - and this is one of Pat  Suppes' favourite 
topics - that  the question of determinism versus indeterminism is really not 
relevant, not really basic for the question of how controllable the world is. It can 
be uncontrollable or although it is deterministic. These old concepts maybe will 
become more and more irrelevant and a new concept of unpredictability versus 
predictability in some sense or other will become more relevant for the future. 
Do you agree? 
Mil ler :  The question of whether the world is in part controllable - I find that  
question very difficult. There must be something between chance and absolute 
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necessity, and this gap must, I think, be filled by propensities. Although they 
are not determined events, events under the sway of propensities are not chance 
events either (though these may exist as well). Somewhere in here must lie the 
clue to control. 
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1 I n t r o d u c t i o n  

Deterministic chaos is often explained in terms of the unpredictability of certain 
deterministic systems. For the traditional viewpoint of determinism, as expressed 
in the idea of Laplace (Weingartner (these proceedings), ch. 1.1), this is rather 
strange: how can a system obey deterministic laws and still be unpredictable? So 
there is an obvious lession which philosophy of science has to learn from chaos 
theory: that  determinism does not imply predictability. But besides this obvi- 
ous point, there is much conceptual unclarity in chaos theory. There are several 
different and nonequivalent concepts of predictability, and accordingly, different 
concepts of chaos. In this paper I will differentiate several different concepts 
of predictability. I will discuss their significance and their interrelations and fi- 
nally, their relation to the concept of chaos. I will focus on very simple examples 
of graphically displayed trajectories of particles (usually in a one-dimensional 
space), without going into the mathematical details of the dynamical genera- 
tion of these trajectories from fundamental equations. I think that  all major 
conceptual problems can already be discussed at hand of these simple examples. 

A dynamical system is defined by its state space (or phase space) S. The 
state space of systems of classical mechanics has to contain, for each particle, its 
position and its velocity - -  or in the Hamiltonian description its position and its 
momentum - -  in the 3-dimensional Euclidean space (cf. Bat terman (1993), p. 
46). Classical dynamics is interested in determining the temporal development 
of such a system from some fundamental equations - -  usually differential equa- 
tions - -  describing the forces which act on the particle(s) of that  system. The 
solutions of these differential equations are functions s : T -~ S which describe 
the possible movements of particles in S in dependence on time and are called 
(time-dependent) trajectories. In the example of planetary systems, the possible 
trajectories are either periodic orbits or collapse trajectories where a planet col- 
lapses into the sun, or escape trajectories where a planet escapes the attraction 
of the sun. Note that  the understanding of notion of trajectory among physicists 
is not unique: besides the t ime-dependent notion of t rajectory there is also a 
time-independent notion of t rajectory (cfi fig. 9). 1 In the normal case we under- 

I Chirikov understands "trajectory" in a time-dependent sense (Chirikov (these pro- 
ceedings), ch. 2.1), Batterman in a time-independent sense (Batterman (1993), p. 47) 
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stand the t ime t and position s in S to be continuous real-valued parameters;  
exceptions where a discrete modeling is assumed will be explicitly mentioned. 

2 The Concept of Determinism 

Usually a mechanical system is called determinist ic  if its s ta te  S(to) at some 
arbitrari ly chosen intial t ime to determines its state s(t)  for each future t ime 
point t > to - -  this is forward d e t e r m i n i s m -  and also, for each past  t ime point 
t < to - -  this is backward determinism.  Of course, the fundamental  equations 
governing the system do not determine the actual t ra jectory of the particle of 
the system (assume it is a one-particle system). But if the particle 's  s ta te  S(to) 
is given for only one t ime point to, then its entire t ra jectory is determined. In 
other words, a mechanical system is deterministic if its trajectories never branch, 
neither forward nor backward in time. 2 For practical purposes, forward deter- 
minism is more important .  But classical dynamical systems are forward as well 
as backward deterministic - -  something which is obvious from their well-known 
t ime-reversibi l i ty .  If  the t ime is assumed to be discrete instead of real-valued, 
there exists an equivalent incremental definition of a deterministic system re- 
quiring tha t  for any given t ime-point tn, the system's state s(tn) determines the 
immediate  successor s tate  s( tn+l)  - -  forward determinism - -  and its immedi- 
ate predecessor s tate  S(tn-1)  (backward determinism). By induction on n, this 
definition implies the earlier one. 

A central feature of all these characterizations of a deterministic system is 
the (implicit) modal or eounterfaetual element which they involve. For the defi- 
nition of determinism says tha t  if the given system is in s ta te  So at  t ime to, it 
mus t  be in s tate  sl at t ime tl  > to - -  in other words, if s ( t l )  ~ s l  were true, 
then S(to) ~ so would have been true. Also the physicist's ta lk of trajectories is 
modal  talk, since a t ra jectory is a possible movement of the system's  particle - -  
possible relative to the fundamental  equations of the underlying theory. Actually 
a particular system moves along only one trajectory; the other trajectories are 
movements  under possible but  non-actual circumstances. When Russell (1953), 
p. 398 suggested his functional definition of determinism - -  a system is deter- 
ministic if there exists a func t ion  of the mentioned kind s : T --* S specifying 
the system's  s tate  in dependence on t ime - -  he seemingly tried to escape the 
modal  element in the definition of determinism, but without success: he himself 
noticed tha t  this definition is too weak, because the movement  of every particle 
- -  be it deterministic or random movement - -  can be described as some func- 
tion of time, though sometimes a rather complex one. 3 So the definition of a 
deterministic system has always to contain the modal concept of possible tra-  
jectories, where in physics, this notion of possibility is of course not understood 

as primitive but  as relative to the underlying theory. 

and Haken in a more complicated sense (Haken (1983), p. 124). The understanding 
of trajectory used here coincides with that of Chirikov. 

2 This was added as a result of my discussion with Robert Batterman. 
a Cf. the discussion in Stone (1989), p. 124. 
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How can we empirically test whether a given system is deterministic? As al- 
ways, via empirical generality - -  we have to realize a situation of the same kind 
more than once. One possibility is tha t  the underlying theory describes systems 
of a given kind A, e.g. two particle gravitational systems, and we are able to 
prepare several systems xi of kind A in a way tha t  they all are in the same state 
s(xi, to) at t ime to. Then we just  have to look whether their future development 
is the same; if so, we have confirmed the hypothesis tha t  systems of kind A 
are deterministic (w.r.t. the parameters  of their s tate space S). Of course, it 
is impossible to definitely verify this hypothesis by finitely many observations 
(which has been stressed in Popper ' s  Logik der Forschung). But note tha t  if 
(and only if) the parameters  describing the system's  s tate  space are continuous, 
the hypothesis of determinism can also never be falsified by finitely many  obser- 
vations. The reason is our limited measurement accuracy: we can measure the 
states only up to a certain acccuracy level, say e. If  we observe tha t  two states 
s(x, t) and s(y, t) are the same up to ~, s(x, t) =~ s(y, t), but they cause differ- 
ent future developments, then this does not necessarily imply tha t  the system 
is indeterministic, because the true s ta te  of x and y at t ime t may be different, 
and the system may exhibit what is called sensitive dependence on initial states: 
small and unmeasurable differences in intitial states may cause great differences 
in future states (see figure 1 below). So for continuous systems the hypothesis 
of determinism is neither definitively verifiable nor definitively falsifiable, but of 
course, it is confirmable or disconfirmable via (dis)confirming the global physical 
background theory. 

In cosmology one is unable to prepare systems and it almost never happens 
tha t  two different systems are in the same state at the same time. Wha t  happens 
is tha t  one or two systems of the same kind are in the same state at two different 
times. In this case the hypothesis of determinism seems to imply tha t  the future 
development start ing from tl  has to be the same as tha t  start ing from t2. This 
means tha t  the fundamental  laws describing the possible trajectories have to 
be invariant with respect to (w.r.t.) time: t ime is 'causally inefficient', nothing 
changes if the entire system is shifted in time. If  this is true, then the notion 
of determinism would be intimately connected with the well-known symmet ry  
principle of invariance w.r.t translation in time. Is it true? 

In my talk I suggested a positive answer. 4 Based on what  I have learned from 
the discussion I want to defend here a more differentiated point of view. Clas- 
sical mechanical systems which are not invariant w.r.t, translation in t ime are 
those where their fundamental  differential equation - -  their Hamil ton operator  
- -  involves an explicit t ime dependence. An example is given if the gravitational 
constant V would change in t ime (which was Dirac's conjecture). Can also such 
a t ime-dependent dynamical system be regarded as deterministic? I am inclined 
to think tha t  this depends on the complexity of the function describing the de- 
pendence of 3' on t ime (which now is understood as a fundamental law, not being 

4 This paragraph was added to the original version presented in my talk. 
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derivable from some 'super'-differential equation). Not just  any function can be 
admit ted  here, for then even if the gravitational constant would change in a 
random way, the corresponding dynamical  system would count as deterministic. 
If there were some fundamental  t ime-dependent laws of cosmology, they must  
exhibit a strong regularity to count as deterministic, e.g. a continuous periodic 
oscillation. Wha t  would count as a resonable 'minimal '  condition for such a reg- 
ularity? I do not know. One suggestion would be to require tha t  such a function 
has to be analytic in the mathemat ical  sense, which implies that  if the value of 
the function and all of its derivatives are given for just one t ime point, then its 
values are determined for all other t ime points. 5 If  this is the case, invariance 
w.r.t, translation in t ime will hold again, provided we include the t ime-dependent  
parameter(s)  in the description of our state space. If  we shift the actual value 
of 3' and its derivatives in time, then the physical behaviour of the system will 
still remain unchanged. So on a deeper level there still seems to be a connection 
between determinism and translation invariance in time. 

The following considerations will be independent from tha t  question. I will 
consider systems without explicit time-dependence; they are deterministic in an 
unproblematic sense. My main question will be what it means for such a system 
to be unpredictable. The second question will be how being chaotic is related 
to being unpredictable. I will be only concerned with deterministic predictions - 
tha t  is, predictions of the actual t ra jectory up to some accuracy level (cL Schurz 
(1989) for a definition of this notion). I will not be concerned with statistical 
predictions of t ra jectory distributions. Tha t  one cannot make deterministic pre- 
dictions does not imply than one cannot predict something about  the statistical 
distributions of trajectories. 6 

Given a deterministic system, two things are necessary for making predic- 
tions. First, one must be able to calculate the function determining future states 
s(t) from intitial states S(to) in some reasonable time, and second, one must  be 
able to measure the initial s tate s(to) with some reasonable accuracy, sufficient 
for keeping the error in the prediction small. Consequently, there are two main 
approaches to unpredictability, one where the first condition is not met  (ch. 3-4) 
and one where the second condition is not met  (ch. 5-6). I will end up with the 
conclusion tha t  in all of the different notions of unpredictability, limited mea- 
surement accuracy and sensitive dependency on initial conditions play a (if not: 
the) key role. 

5 This follows from the fact that all analytic functions can be expanded by a Taylor 
series with vanishing residual (cf. Zachmann (1973), p. 399, p. 262). Strictly speaking, 
the notion of an analytic function is defined only for complex valued functions. For 
real valued functions, we must require expandability by a Taylor series directly. 

6 The last two sentences where added after the talk, in reaction to a critical comment 
of Patrick Suppes. 
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3 T h e  O p e n  F o r m  C o n c e p t  o f  U n p r e d i c t a b i l i t y  

The following conception of unpredictability has been suggested, among others, 
by Stone (1989). It is concerned with the complexity of the computation which 
calculates the future state s(t) from a given initial state S(to) - -  more pre- 
cisely, with the dependency of this complexity on the prediction distance t - to, 
the temporal  distance between the initial and the predicted state. Some of the 
differential equations describing dynamical systems are integrable: they admit so- 
called closed form solutions. For instance, the differential equation ds/d t  = k.s 
has the class of closed form solutions s(t) = so.e kt which describe exponential 
growth or decay (depending on whether k is positive or negative). Several dif- 
ferential equations, for instance the three body problem of mechanics, are not 
integrable. Some of them may be solved in an approximate way, but some others 
admit even not an approximative closed form solution. They can only be solved 
pointwise- which means that  there is an algorithm which calculates s(tn+l) from 
S( tn )  , for a given partit ion of the continuous time into discrete time intervals. 
Pictorially speaking, such an algorithm simulates the evolution of the system by 
moving incrementally along its trajectories. Such a pointwise solution is always 
an approximation in the case of a continuous time, but it may be exact in the 
case of functions depending on a discrete (time) parameter. An example is the 
well-known logistic function sn+l = 4As~(1 - s~), where s~ := s(t, O, which de- 
scribes the so-called "Verhulst-dynamics" of the growth of a population with a 
dampered growth rate. 

The crucial difference between closed form and open form solutions is not 
adequately captured by saying that  the former admit solutions of the form s = 
f (so,  t), while the latter only admit point-to-point solutions of the form sn+l = 
f ( sn) .  From a mathematical viewpoint one can define also in the latter case a 
function g such that  s~ = g(So, n), just by defining g(So, n) = fn(So),  where f~  
means f n times iterated. The crucial difference is that  in closed form solutions 
the complexity of the computation of the function s = f ( t )  is independent or at 
least almost independent from the prediction distance t - to. In contrast, in open 
form solutions the complexity of the computation increases proportionally, and 
significantly, with the prediction distance. Hence I suggest to define a solution as 
having a closed form if there exists an algorithm for its computation for which 
the time of computation is almost independent from the prediction t ime and 
significantly shorter than it; otherwise it has an open form. 

Assume a solution has an open form. If we observe the system's initial state 
at t ime to and then start  our predictive algorithm, we will never be able to predict 
the system's future state at times t > to because the algorithm is not faster than 
the system itself and hence will terminate not earlier than t. This effect has moti- 
vated several authors, like Stone (1989), to see here the crux of unpredictability. 
Therefore I call this the open form concept of unpredictability. Let us ask: under 
which condition do open form solutions really lead to unpredictability? In order 
to eliminate other sources of unpredictability we assume that  the system does 
not exhibit sensitive dependency on initial conditions: the error of the predicted 
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s ta te  shall be comparable in magnitude with that  of the initial state. Then we 
can draw the following distinction. If we cannot control the initial s ta te  of the 
system but  merely observe it - -  as for example in the prediction of the movement  
of a comet - -  then an open form solution wilt indeed lead to unpredictability, for 
we can s tar t  the point-to-point computat ion procedure not earlier than  we have 
observed the initial state. On the other hand, if we can control the initial s ta te  
and hence are able to prepare it at  any given time - -  for example a technological 
operat ion in a primitive environment - -  then we may run the simulating proce- 
dure and wait for its termination before we prepare the initial s ta te  of the real 
system. In this situation the fact that  the system's solution is open form does 
not at all prevent us from predicting the system because we can simulate the sys- 
t em ' s  evolution in advance. We can summarize this insight as follows: open form 
solution and uncontrolIability implies unpredictability. There is an objection to 
this line of reasoning coming from chaos in computer simulations. Continuous 
real-valued parameters  cause errors of two kinds: the first results from the in- 
accuracy of their measurement,  and the second results from the inaccuracy of 
their mathemat ica l  representation by finite strings of digits. The second kind of 
error is made in each iteration of an open form solution. On this reason, some 
authors have argued tha t  iterative computer  simulations may exhibit chaotic 
behaviour because the small rounding errors which are made in each iterative 
computa t ion  step may amplify each other in an exponential way (cf. Peitgen 
et al. (1992), ch. 1.5). However, I think tha t  if  this is the case, it results from 
sensitive dependence on intitial states but not from the mere fact of an open 
form solution. If  there is no such sensitive dependency, the expected error of an 
open form solution will be not greater than  tha t  of a closed form solution. Let us 
demonst ra te  this more carefully at hand of two figures. Figure 1 shows a system 
tha t  exhibits sensitive dependence on intitial states: trajectories (sl,  s2) which 
s tar t  from almost the same initial point diverge from each other very rapidly 
- -  in the typical case with exponential divergence rate (cf. ch. 5-6). As a result 
unmeasurable differences in initial values get amplified and cause great differ- 
ences in pedicted values. The point b is called a bifurcation point. Note tha t  this 
is just  the simplest case of diverging trajectories; typically chaotic systems have 
a great  number of bifurcation points (they are indicated by the dotted curves, 
but  note tha t  trajectories with many bifurcation points are bet ter  displayed in 
t ime-independent  or in a more-that-two-dimensional manner).  The amplification 
of error in the closed form solution, where the computational  algorithm directly 
moves from S(to) to s(tp), is indicated by asterisks *; the amplification of error in 
the open form solution, where the algorithm moves from S(to) to S(tp) via several 
intermediate steps, is indicated by the boxes ([:]). As fig. 1 shows, there is no 
significant difference in error amplification, for in both  cases the error is already 
'catastrophic ' ;  moreover, the errors due to rounding go in both directions (up or 
down) and hence do not sum up but cancel each other out (although, because 
of the exponential divergence, they don' t  cancel out to zero). 
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Fig. 1: Sensit ive dependence  on initial condit ions because of exponen-  
t ia l ly  diverging t rajector ies .  ~ -- measurement  accuracy  level. * = closed 
form, [] = open form. 

F igure  2 shows a sys tem wi th  stable t ra jector ies  - -  they  do not  diverge f rom 
(nor converge to)  each other  but  keep in an a lmost  cons tant  d is tance  (cfi Haken  
(1983), p. 132). Here  nei ther  the  closed form solution �9 nor the open  form solut ion 
([::]) will p roduce  an amplif icat ion of error. The  expec ted  error of the  open  form 
solut ion will be  the  same as t h a t  of  the  closed form solution, because  (assuming  
the  errors  as r andomly  dis t r ibuted) ,  they  cancel out  to zero. 
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Fig. 2: A sys tem with  s table  trajectories.  �9 = closed form, 
f o r m .  

[] = open  
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If the system is discrete but infinite, the situation concerning open form 
solutions is similar. If the system is discrete and finite, the situation changes 
because then we may be able to run the simulation starting from all possible 
states in S. Thereby we obtain a finite list which specifies for each initial state 
soeS and each n the state sn. By using this list, we are able to calculate the future 
state of the real system much quicker than it occurs in reality, even if we have 
no control over it. I conclude that  open form solutions are not a fundamental 
obstacle to predictability - -  only in the case of systems with uncontrollable 
continuous or infinitely many states. 

4 T h e  A l g o r i t h m i c  R a n d o m n e s s  D e f i n i t i o n  o f  

U n p r e d i c t a b i l i t y  

This concept of unpredictability is based on the algorithmic complexity theory 
as developed by Kolmogorov, Chaitin and Solomonoff (cf. Fine (1973), ch. V; 
see also Bat terman (1993), ch. IV). Prima facie this concept applies to discrete 
sequences - -  trajectories in a finite state space with discrete time. The  algorith- 
mic complexity K(SQ/ I )  of a finite sequence SQ given information I is defined 
as the length of the shortest computer program which generates (computes) the 
sequence SQ when combined with input I. To avoid this definition being relative 
to the underlying computer, one assumes this computer to be the universal Tur- 
ing machine. To obtain the intended definition of randomness, one assumes the 
information I just to be the length nsQ of the sequence SQ, and considers the 
behaviour of K(SQ/nsQ) with increasing nsQ. If K(SQ/nsQ) increases with 
nsQ in an unbounded way, hence if the limit of the quotient K(SQ/nSQ)/nSQ 
for n --~ cx~ is positive, then the sequence SQ is called algorithmically random 
(cf. Bat terman (1993), p. 57; Ford (1989)). The intuitive idea behind this defi- 
nition is that  if a sequence is random in the algorithmic sense then the shortest 
program which can generate it will be as long as the sequence i t s e l f -  and hence 
will go ad infinitum if n goes ad infinitum. No lawlike redundancy whatsoever 
is embodied in an algorithmically random sequence which would allow to pre- 
dict the entire sequence from a finite intial segment. It  has been proved that  
sequences which are algorithmically random tend to possess all the standard 
statistical features of randomness (Martin-LSf (1966)). 

First of all it has to be emphasized that  the algorithmic randomness concept 
of unpredictability (promoted by Ford (1989)) is much stronger than the open 
form concept of unpredictability. The latter concept is based on the length of 
the computation of the predicted state, while the former concept is based on the 
length of the program performing this computation. The program of an open 
form solution has the following form: set So = k; for 0 < n <_ p compute Sn+l : 

f ( sn) ;  halt (where p is the discrete prediction time). If f is a function with 
a small computational complexity, which is independent from n, the length of 
this program will be rather short. For example, this is the case for the logistic 
function, where sn+l = 4s~(1 - s~). In contrast, the time which the program 
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needs to compute sn from so (via n steps) - in other words, its halting time - -  
may be very long, (simply because recursive commands of unit length may cause 
iterations of any number). In other words, that  a sequence SQ is algorithmically 
random does not only imply that  there exists no closed form solution, but  also 
that  there exists no open form solution generated by an iterative function f(s, 0 
with a complexity which does not increase with n. Many open form functions do 
not create algorithmically random sequences. For instance, the logistic function 
does not produce random numbers, if it is projected on a partit ion of the unit 
interval into three subintervals of equal length. In this case, certain combinations 
of the numbers 1, 2 and 3 will never be produced by the logistic function (cf. 
Peitgen et al. (1992), p. 396), and hence the sequence is not random, although 
the function is essentially of open form, not equivalent with any closed form 
function. 

The interesting question is how algorithmic randomness is related to sensi- 
tive dependence on initial conditons. To answer this question one first has to 
find a way to apply the concept of algorithmic complexity, which is defined for 
discrete sequences, to continuous trajectories. This is done by partitioning the 
continuous state space S as well as the continuous time T into a finite number 
of 'cells', and by considering the projection of the t rajectory on this parti t ion 
- -  this projection is called a symbolic t rajectory (this notion was first intro- 
duced by Hadamard; cf. Chirikov (these proceedings), ch. 2.2). Of course the 
algorithmic complexity of such a symbolic t rajectory will depend on the un- 
derlying partition, but by making the partit ion finer and finer one obtains a 
limit algorithmic complexity which is partition-independent. It follows from the- 
orems proved by Brudno (1983), White (1993) and Pesin (1977) that  for almost 
all trajectories satisfying certain mathematical preconditions, their algorithmic 
complexity equals their metric entropy which in turn equals the sum of their 
positive Lyapunov exponents. 7 Thereby the Lyapunov exponents of a t ra jectory 
express the mean exponential rate of divergence of its nearby trajectories. If they 
are positive (negative), the trajecories are exponentially diverging (converging). 

The Brudno-White-Pesin theorems establish a mathematical connection be- 
tween algorithmic randomness and sensitive dependence on initial conditions. 
These theorems as well as their preconditions are highly complicated. Therefore 
it seems appropriate to t ry  to explain the relation between algorithmic ran- 
domness (AR) and (exponentially) diverging trajectories (DT) from a purely 
qualitative point of view. The one direction, from DT to AR, seems to have an 
easy qualitative explanation. For given the trajectories are everywhere rapidly di- 
verging from each other, then for every finite parti ton P(S) of the state space S, 
the information that  the position of the particle at given discrete times t l , . . . ,  tn 
falls into certain cells c l , . . . ,  c~ of P(S) will not be sufficient tO determine its 

7 Cf. Batterman (these proceedings), ch. 2; Chirikov (these proceedings), ch. 2.4. I 
have simplified matters: the discrete partitioning of S is needed for the definition 
of metric entropy, while for the definition of algorithmic complexity it suffices to 
consider a discrete open cover of S. 
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position at the next time point tn+l - two trajectories coinciding in all these cells 
may spread between tn and tn+l into two distinct cells. Therefore the shortest 
computer program which can generate the symbolic trajectory c l , . . . , c ~  will 
always have to contain explicit information about all the discrete position values 
and hence will increase with increasing n in an unbounded way. So it will be 
algorithmically random. 

The other direction, however, cannot be explained in such a straightforward 
qualitative manner. It  is clear tha t  if we are allowed to take as our t ra jectory any 
function, then A R  will not imply DT. As an example, assume the trajectories 
to be functions mapping integers (Int)  into themselves - hence both state space 
and time are discrete and infinite. Take any noncomputable function f ( x )  and 
define the set of trajecories to be the set of all functions differing from f ( x )  by 
an integer, {g(x) [ g(x) = f ( x )  + m for some integer m}. These trajectories will 
be algorithmically complex, because they are not computable, although their 
trajectories are stable. See fig. 3. 

I t I I t 

Fig. 3: Algorithmically complex but stable trajectories with discrete S 
and T. 

But  recall what was said in ch. 2 concerning time-dependent Hamilton op- 
erators. Not just any function can count as deterministic - only one which is 
sufficiently 'regular'. The  functions of fig. 3 are totally irregular and hence can- 
not constitute a violation of the claim that  every deterministic function which 
is algorithmically random must have diverging trajectories. Indeed, the precon- 
ditions of the Brudno-White-Pesin-theorems seem to be rather strong - they 
require the trajectories to be a continuous, inversely continuous, twice differen- 
tiable and measure-preserving mapping of a compact metrizable space into itself 
(cf. Bat terman (these proceedings), ch. 2). I conjecture that  these conditions are 
similar to the conditions for analytic functions, or functions representable by a 
Taylor series, which have been mentioned in ch. 2. For such a function f the 



Kinds of Unpredictability in Deterministic Systems 133 

Brudno-White-Pesin-theorem has an easy qualitative explanation: if we let the 
values fn(to) of all the finitely many derivatives of f be the initial conditions, 
then these values determine the entire function. Hence if these values are given 
with some finite accuracy E, then given the trajectories are stable, the values of 
f for all times t will be determined up to some given ~; and so, the expression 
KSQ/nsQ/nsQ will go to zero for increasing nsv. 

Let us finally consider the question of algorithmic randomness for systems 
with a discrete state space.  If the state space is discrete and finite, algorithmic 
randomness is impossible. For then there exists a finite list C_ S • S specifying 
for each state in S which next state is determined by it. This list gives us a finite 
program which together with the given initial condition will generate the correct 
temporal evolution for a prediction time of arbitary length. So with increasing 
length of this temporal  evolution (coded as a sequence), the algorithmic com- 
plexity will converge towards zero. Since every computer program is a finite and 
discrete system, it follows that  no computer simulation can generate algorithmi- 
cally random sequences, and hence that  computer generated random numbers 
do not exist. This is important  because there exist several computer algorithms 
for producing ' random' numbers. These computer generated 'random' numbers 
will always be pseudo-random, but  not really random in the algorithmic sense. 
For similar reasons, computer generated chaos will always be pseudo-chaos in 
the sense explained by Chirikov (these proceedings), ch. 3.4. 

Of course, if the state space is infinite, then algorithmic randomness is pos- 
sible via uncomputable functions. But as was argued above, such functions can 
hardly be called 'deterministic'. So it seems that  the only way for deterministic 
systems to produce random trajectories is via sensitive dependence on initial 
conditions because of diverging trajectories. If this is true, then deterministic 
unpredictability is a typical feature of continuous systems, because diverging tra- 
jectories lead to unpredictability only on the condition of limited measurement 
accuracy, and this condition is typical for continuous systems. In the following 
sections I turn to this latter concept of unpredictability. Also here we will have 
to face the problem that  there are several different and nonequivalent concepts 
of trajectory divergence and, hence, of unpredictability. In ch. 5 I discuss some 
standard explications of t rajectory divergence. Their common feature is tha t  
they are based on limit considerations. In ch. 6 I will suggest some pragmatic 
definitions of unpredictability in order to overcome certain problems of the limit 
conceptions. 

5 Limiting Trajectory Divergence Concepts 
of Unpredictability 

These concepts consider the limit behaviour of trajectories - their behaviour 
when the difference in initial conditions goes to zero and the prediction distance 
goes ad infinitum. 
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5.1 T h e  S imple  T r a j e c t o r y  Dive rgence  C o n c e p t  

This concept has been suggested by Suppes (1985), p. 192, in terms of Lyapunov- 
stability. A system is Lyapunov stable if two different trajectories keep arbitrarily 
close together, ad infinitum, provided their difference in initial conditions is 
sufficiently small. Let S denote the space of all possible trajectories, i.e. functions 
s : S --* T. Then the formal definiton of Lyapunov-stability and that  of its logical 
contrary - (simple) trajecory divergence - are as follows. Note that  the negation 
of (1) is logically equivalent with a condition, call it (2'), which is like (2) except 
that  "Ve" is replaced by "3~"; but diverging trajectories will always satisfy the 
stronger condition (2). 

(1) Lyapunov-stability: 
v r  3 6 > 0  Vs, s ' ~ s  vt>_to: I s o - s ' l < 6  -~ I s ( t ) - s ' ( t ) l < ~ .  

(2) Trajectory-divergence: 
w > o v~ > o 3s ,  s' c s 3t > to : I so - s" I< ~ A I s ( t )  - s ' ( t )  1>>_ ~. 

The Lyapunov stability concept of predictability is very s t r o n g  - it implies the 
possibility of a prediction with a given accuracy level ~ for the entire future, i.e. 
for a l l  prediction times. Vice versa, the corresponding concept of unpredictability 
is very weak. It is violated whenever the trajectories of a system d i v e r g e  from 
each other - not only if this divergence increases exponentially with time, but 
also if it only increases linearly in time. To give an example, assume I sling a 
ball fixed on a rope in a circle and let it go at some time. The angle of the 
line along which the ball will fly away will depend on the position where it was 
released. So the trajectories will diverge linearly from each other - formally they 
are functions of the form s ( t )  = k . t  + a. Also in this case the trajectories are 
Lyapunov unstable (see fig. 4). 

t 

Fig. 4: Linearly diverging trajectories (produced by a slingshot experi- 
ment). 
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The trajectories of fig. 4 are Lyapunov unstable and hence unpredictable 
according to the trajectory divergence concept. Since measurement of the release 
time has finite accuracy, it will not be possible to predict the ball's position with 
a certain accuracy c for all future times. Intuitively, however, I think one would 
not speak in this case of an unpredictable system. It seems that  the condition is 
too weak. 

5.2 T h e  E x p o n e n t i a l  D ive rgence  C o n c e p t  

This is a stronger concept which identifies unpredictability with exponential di- 
vergence of trajectories. It is connected with the Lyapunov coefficients which 
have been mentioned in ch. 4 and express the mean exponential rate of diver- 
gence of two nearby trajectories. If the trajectories diverge exponentially from 
each other, the Lyapunov coeffficients are positive (if they converge exponen- 
tially, the Lyapunov exponents are negative, and otherwise they are zero). Hence, 
this concept of unpredictability is equivalent with that  of positive Lyapunov ex- 
ponents. It is the concept of unpredictability which underlies the Brudno-White- 
Pesin theorems of explained in ch. 4. 

The simplest example of exponentially diverging trajectories is exponential 
growth (s = so.ekt), as shown in fig. 5. (The more complicated example of fig. 1 
is discussed soon.) Is this concept sufficient to explicate our intuitions of an 
unpredictable or even a chaotic szenario? I doubt that. Usually we are not inter- 
ested in predicting the infinite future but only some finite future. As has been 
remarked by Batterman (1993), p. 52f, exponentially diverging trajectories do 
not prevent us from making finite predictions with arbitrary accuracy. It is ob- 
vious from fig. 5 that  for each future time point t we may predict the systems 
state s(t) with arbitrary accuracy provided we make the accuracy in the initial 
conditions sufficiently small. In other words, the following will hold in the case 
of exponential growth: 

(3) v t  > to w > o 36 > o Vs, s' c s : I so - sS I<  6 -~ Is ( t )  - s'(t )  I<  
(continuous dependence on initial conditions) 

Condition (3) is Hadamard's condition of continuous dependence on initial 
conditions (cf. Batterman (1993), p. 53). Batterman (1993), p. 53f tells us that  
Hadamard's condition fails for some systems which are governed not by ordinary 
but by partial differential equations. Such systems admit immediate growth of 
trajectory divergence, that  is, they satisfy the following 

(4) vt_>to w > 0 v 6 > O 3 s ,  s ' ~ S :  [ s o - s ~ l < 6  AIs(t)-s'(t)l_> 
(immediate growth of trajectory divergence) 

A trajectory space with immediately growing trajectories is shown in fig. 6. 
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b 

Fig. 5: Exponential growth. Fig. 6: Immediately growing 

trajectories - condition (4). 

t 

Note that  (4) is much stronger than the negation of (3), which is 

(5) 3 t > t 0  3 , > 0 v ~ > 0  3s, s ' e S :  I s 0 - s ~ l < ~  A I s ( t ) - s ' ( t ) l > E  
(negation of Hadamard's condition) 

As Batterman remarks, Hadamard's condition follows as a corollary from 
the existence and uniqueness of solutions, and he seems to presuppose that  
all ordinary differential equations have unique solutions (Batterman (1993), p. 
54). But this is not generally true - -  many ordinary differential equations have 
solution manifolds containing some singular points - -  (initial) points which are 
shared by many or even all trajectories (cf. Bronstein and Semendjajew (1973), 
p. 381; Haken (1983), p. 126). Consider again the trajectories of fig. 1 with one 
bifurcation point. If many or even all trajectories of fig. 1 would start  from the 
point b (or go through the point b), then b is a singular point and Hadamard's 
condition is violated. This situation is shown in fig. 7, and the following condition 
will hold in such a case: 

(6) V t > t 0  3 ~ > 0  V S > 0  3s, s 'ES :  [so-Jol<5 AIs(t)-s'(t)l>_~ 

Note that  (6) is stronger than the negation of Hadamard's condition (5) but 
weaker than immediate growth of trajectories (4). 

The situation of fig. 7 contains branching trajectories. So, according to what 
was said in ch. 2, the underlying system is no longer a deterministic one - -  for 
initial point b, the future is 'undetermined'. On the other hand, if the trajectory 
space contains no trajectory branching, then the initial values of the trajectories 
in fig. 1 will only come arbitrarily close to the point b without crossing it - -  
the only trajectory which goes through point b will be the bifurcation line. This 
situation is shown in fig. 8, and for this situation, Hadamard's condition is again 
satisfied. For here, the trajectories above and below the bifurcation line may 
come arbitrarily close together provided their initial values are sufficiently close 
to the bifurcation point b. 
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" t 

Fig. 7: A singular point without 

unique solutions - condition (6). 

Fig. 8: Bifurcation without 

violation of condition (3). 

Hunt (1987), p. 130, has argued that  whenever the t rajectory space contains a 
bifurcation point, Hadamard's condition will be violated. I do not know whether 
there exists a unique definition of the notion of a bifurcation point and what it 
is. However, if both figures 7 and 8 are examples of bifurcations, then Hunt 's  
claim cannot be generally true - it holds only for fig. 7 but not for fig. 8. 

It  seems to me that  Batterman's  claim that  Hadamard's  condition is gen- 
erally satisfied for all ordinary differential equations is true if it is restricted to 
those which produce deterministic t rajectory spaces. However tha t  may be, many 
systems usually subsumed under the rubric 'chaotic systems' satisfy Hadamard's  
continuity condition. Therefore, as a general condition for unpredictability the 
negation of Hadamard's continuity condition seems to be too strong. Hence we 
are confronted with a kind of dilemma. We have three explications of unpre- 
dictability in the sense of sensitive dependency on initial conditions. The first 
two are too weak and the third is too strong. Is there something in between which 
fits our intuitions better? I think that  every limit concept of unpredictability will 
be unsatisfactory in this respect, because our intuitions of unpredictability and 
chaos are essentially pragmatic. We are not interested in predictions about the 
limit behaviour but about a finite prediction distance, and we cannot measure 
the initial conditions with arbitrarily high precision but only with finite pre- 
cision. Also, the error in our predictions need not be made arbitrarily small, 
but  only if it exceeds a certain relevant degree, it will be practically harmful. 
Based on these considerations I will suggest in the next chapter some pragmatic 
definitions of unpredictability. 

6 Pragmatic Trajectory Divergence 
Concepts of Unpredictability 

I make three pragmatic assumptions. First, there exists a smallest measurement 
accuracy ~0 of the initial conditions relative to the given background of theoreti- 
cal knowledge as well as the given technical possibilities. Let me emphasize that  
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it follows from quantum theory that  there are not only technical reasons but  also 
reasons in principle for the assumption of a finite lower bound of measurement 
accuracy - -  for if ~ reaches quantum dimensions then Heisenberg's uncertainty 
relation will imply that  a further decrease of E is impossible. Second, there exists 
a smallest level s̀o of differences in our predictions which count as practically 
relevant, relative to the given background of practical circumstances and goals. 
Third, I assume there exists a smallest prediction time tp which counts as inter- 
esting; hence we are interested in making predictions only for prediction times 
t ~ t p .  

Now I call a system pragmatically unpredictable iff the following holds: 

(7) vt>tp 9s, s ' c S :  Iso-S'ol<~o AIs ( t ) - s ' ( t ) l  >_,So 
(Pragmatic unpredictability) 

In words, for all practically relevant prediction distances there exist trajecto- 
ries with unmeasurable difference in their initial points but practically relevant 
difference of their predicted state. The negation of (7) is written down in (8). 
It may be called weak pragmatic predictability, because it says that  there is at 
least some future t ime for which all practically relevant differences in the pre- 
diction outcome will be caused by measurable differences of the initial states. 
In contrast, strong pragmatic predictability says that  this holds for all future 
times. 

(8) 3 t  > tp v , ,  s' e s : Is ( t )  - s ' ( t )  >_ `so --* I so - s'ol >_ ~o 
(weak pragmatic predictability) 

(9) Vt>_tp Vs, s ' c S :  I s ( t ) - s ' ( t ) l  _`so ~ I so-s'ol >_~o 
(strong pragmatic predictability) 

Let me finally discuss Bat terman's  example of the roulette wheel in the light 
of this definition. Bat terman's  point is that  despite the fact that  the differential 
equations describing the roulette wheel are linear and integrable, which is the 
typical situation of regular and nonchaotic behaviour, the roulette wheel is used 
in practice to produce a completely unpredictable random process (Bat terman 
(1993), pp. 63-65). Assuming a small friction, the spinner's trajectories will even 
be Lyapunov-stable: since the movement of the wheel comes to an end after some 
finite time, it will be possible to keep the trajectories of the spinner arbitrarily 
close together for all future times if we specify the initial condition - -  the initial 
momentum of the wheel - -  with a sufficient accuracy. Hence the roulette wheel 
is predictable according to the limit concept, and thus it is not algorithmically 
random (according to the Brudno-White-Pesin theorems). But still we use the 
roulette wheel to produce a random process. How is this possible? 

With our pragmatic concept of unpredictability we have an easy explanation 
for that.  Consider the time-independent trajectories of the roulette wheel in the 
state space with the angular momentum ~ and the position s of the spinner 
in fig. 9. The circular path of the spinner is projected on a linear axis s with 
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marks for the periodic circles - -  27rr is the length of one period, where r is the 
radius of the circle (the third axis of time lies perpendicular to the plane of the 
paper.) We assume an almost linear relation between angular momentum and 
position. Although the trajectories are stable linear functions, we have pragmatic 
unpredictability: because of the small friction, the gradient of the trajectories is 
so small that  unmeasurable differences in the initial momentum of the spinner 
will cause 'hughe' differences in the position where the spinner stops: differences 
which are greater than one period of the spinner and hence which are much 
greater than the practically relevant difference of the outcome, which is 2r~r/37, 
if the circle is divided into 37 numbered intervals. Hence it will be completely 
impossible to predict the 'number' at which the spinner will stop from any mea- 
surement of the initial momentum. The moral of these considerations is that  
pragmatic unpredictability is very different from the various kinds of dynamic 
irregularity or algorithmic complexity. 

o 

2 ~  ~0 = 2~d37 

~ s 

6 01 2 

Fig. 9: Time-independent trajectories of a roulette wheel. 

7 F r o m  U n p r e d i c t a b i l i t y  t o  C h a o s  

Chaoticity is certainly something stronger than unpredictability. Though this is 
not the main focus of this paper, let us finally ask in what this stronger prop- 
erty consists. There are several suggestions to characterize chaos in terms of 
the mathematical features of the differential equations describing the system. 
For instance, Batterman (1993), p. 62, suggests as a necessary condition for a 
chaotic system that  it must not be integrable, i.e., its differential equation must 
not admit of an exact closed form solution. I am not sure whether this condition 
is really necessary. On the other hand, it is certainly not sufficient because there 
might be open form solutions which behave quite regular. Another frequently 
mentioned characterization of chaos often mentioned is that  the differential equa- 
tions have to be nonlinear. Nonlinearity gives often raise to bifurcations in the 
trajectory space; however, it does not necessarily lead into chaotic behaviour (cf. 
Chirikov (these proceedings), ch. 2.4). 
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I want to propose that  there are three conditions which are necessary and 
taken together sufficient for chaos. One condition is pragmatic unpredictability. 
For according to the limit concept of unpredictability, i.e. the trajectory diver- 
gence concept, even our solar system is unstable and chaotic (cf. Chirikov (these 
proceedings), ch. 2.5), but the time after which it becomes unstable is of the 
same dimension as the cosmological time and hence without practical relevance. 
I think it makes no sense to call our solar system chaotic if we want to avaoid 
making the concept of chaos almost empty; therefore I think that  pragmatic un- 
predictability is a necessary condition for chaos. But pragmatic unpredictability 
is not enough for chaos, as is seen from the roulette wheel: though it is prag- 
matically unpredictable, its trajectories are regular and stable and thus not at 
all chaotic. So I think that  a second condition for chaos is exponential trajec- 
tory divergence, and thus, by the Brudno-White-Pesin theorems, algorithmic 
randomness. But also this is not enough, for intuitively we want to distinguish 
chaotic behaviour from exponential growth (or exponential 'explosion') - -  and 
the trajectories describing exponential growth satisfy the second condition, and 
with a suitably chosen relevant outcome interval 60 also the first condition. As 
emphasized by Chirikov (these proceedings), ch. 2.4, the important third condi- 
tion of chaos is the boundedness of the trajectories: in distinction to exponential 
growth, the (time-independent) trajectories remain within a finite region of the 
state space. This third condition explains several further characteristic features 
of chaotic trajectory spaces. First, the boundedness of trajectories is usually 
produced by adding a nonlinear term to a linear differential equation; hence the 
importance of nonlinearity. Second, boundedness together with algorithmic ran- 
domness implies that  the (time-independent) trajectories will oscillate in a finite 
region of the state space without being periodic, i.e. recurrent in time (cf. Wein- 
gartner 1995, ch. 1.3.4); for if they were periodic, they could not be exponentially 
diverging from each other. This implies, third, that  the 'symbolic' trajectories 
mentioned in ch. 4 will contain all possible sequences (Chirikov (these proceed- 
ings), ch. 2.2) and thus simulate a statistical random experiment; and fourth, 
that  the set of trajectories starting from one finite cell will, after some time, have 
filled the entire state space (cf. Weingartner 1995, ch. 1.3.4). 

Let me conclude with a conceptual problem. It seems to me that  the third 
condition of boundedness is - not in conflict with the first condition of prag- 
matic unpredictability, but - in conflict with the second condition of trajectory 
divergence. For if the trajectories remain within a finite region S/  of the state 
space S, then it is impossible that  the mean distance of neighbouring trajecto- 
ries increases - linearly or exponentially - with time in an unrestricted way: the 
distance will never exceed the 'diameter' I Sf I of the finite region Sf. So strictly 
speaking, the limit definition (2) of trajectory divergence cannot be satisfied if 
the trajectories are bounded. 

I do not know what the best solution of this problem will be. Maybe we 
should drop the second condition and only work with the first and the third. 
Alternatively, we could restrict the second condition of exponential divergence 
to some finite initial segment of time. However, these considerations lie beyond 
the scope of this paper. 
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Discuss ion of Gerhard Schurz' Paper  

Bat te rman,  Chirikov, Miller, Noyes, Schurz, Suppes, Weingartner 

C h i r i k o v :  According to authorized schedule, we begin with the discussion of the 
talk of Gerhard Schurz about  various kinds of unpredictability in deterministic 
systems including his own new conception of pragmatic  unpredictability. 
S u p p e s :  I t  is not tha t  I really disagree with what  you have to say but  I want to 
emphasize tha t  for a good pragmatic  sense of unpredictability - as for example 
in gambling - we must  have a more detailed notion than a general notion of 
randomness. For instance, if we have a roulette wheel as in your example, we 
would have randomness under the definitions being given here for example of 
complexity when the distribution of the frequency of numbers was very uneven. 
Under the terminology we are using, we got tha t  it is random. As I unders tand 
your terminology you would want to say pragmatically tha t  it is unpredictable.  
But  there are sharper notions. There is a sharpening of tha t  notion tha t  is very 
impor tant  in gambling, so it is very pragmatic. For example, to know what  the 
actual distribution is, as for roulette wheels at Las Vegas. The actual empirical 
distribution is rather  important ,  so it is not just enough to have a general no- 
tion. Because when you bet according to whether frequencies are higher than  
average, for example, the actual distribution is rather important .  I t  is the same 
with horse-races. I t  is not at all important  in gambling to have a general no- 
tion of randomness, but it is absolutely everything to have a detailed notion 
with a quanti tat ive concept. I t  seems to me, that  is one aspect of pragmat ic  
unpredictability, tha t  is not sufficiently emphasized in your discussion. Under 
the Kolmogorov complexity definition, consider a 0-1-sequence of the following 
sort: At each position of the sequence which is a power of two - 21, 2 2, 2 3, ... 

- and just  at these exact powers we have a randomization by flipping a coin. 
All other positions are l 's .  Now by this complexity definition this is an unpre- 
dictable sequence, because you cannot code any actual sequence with less than  
infinite length, but  most of the time you could do an extremely good job in 
predicting. So tha t  is why I am emphasizing tha t  for gambling purposes a much 
more detailed notion is needed, it seems to me, for a serious pragmat ic  notion 
of unpredictability. 

Schurz :  I completely agree. My definition was pragmatic only in the sense tha t  
the accuracy level of the initial da ta  is fixed and it depends on the background, on 
the background of practical possibilities ~ and it was pragmatic  also in the sense 
tha t  the significant difference level in the outcome depends on the background. 
And I wanted to show that  if I have such a notion of unpredictability, then 
even those systems where we have a linear relation between initial s tates and 
outcomes might be unpredictable if the linearity coefficient is very small. So 
this was the point of my definition. I agree fully that  to have a good concept 
of unpredictabil i ty one has to consider also the actual distribution and only if 
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this distribution is really symmetric then there will be unpredictabili ty in the 
statistical sense. 

Noyes :  On the pragmatic  aspects of gambling I would like to point out tha t  
- not for coin tossing but for a rolling dice h a normal person, if you bank the 
dice off a corner so it hits one corner, hits another  side and then comes out, 
cannot control the die. But  I am told that  people who have practised tha t  for a 
period of several years developed a kinesthetic sense tha t  allows them to throw 
the die and get a desired result even on two banks anywhere. So this is not 
a mechanical thing but it is a human thing. So if you have a human operator  
tha t  has developed the skill then your statistics are not going to do you any 
good because he could fool you. You know this is supposed to be unpredictable,  
supposed to be guaranteed unpredictable because any normal person, throwing 
two die and banking them off two corners will not be able to control the result. 
But  a person, who has developed the skill can and can make a lot of money out 
of it. 

C h i r i k o v :  I have a brief remark that  your ideas seem to me too pragmatic.  Of  
course, it is a very important  thing of life, I believe, but  I 'd  like to a t t rac t  the 
a t tent ion tha t  there is also an opposite goal, namely, to understand the funda- 
mental  properties of predictability and unpredictability, to understand properly 
the phenomenon which we call dynamical chaos. So I would rather  agree with 
your understanding of pragmatici ty in the sense that  you don ' t  know how to fix 
this arbi t rary  accuracy. This, in my opinion is a disadvantage of this part icular  
notion, because you need to fix it somehow from physical point of view or math-  
ematical  or whatever. And in classical mechanics there is no limit. In quan tum 
mechanics you mentioned there is indeed a physical limit for accuracy but  not in 
classical mechanics. So, we need to discuss other interpretations of this notion. 
Schurz :  I think tha t  when the distances get so small tha t  they arrive at  quan- 
t um distances then we have a natural  physical limit of measurement  accuracy. 
So this is one limit. But  I don ' t  know whether this limit is practically very signif- 
icant. Actually, in practical situations the limit of measurement  accuracy will be 
determined by the context and by the particular kind of system and experiment,  
and so in this sense it is pragmatical.  My point was tha t  the limit definitions 
of predictions ~ positive Lyapunov exponents, diverging trajectories and so on - 
they are independent of any pragmatical  fixation. This is their benefit. But  on 
the other hand, if you are interested in finite predictability, they don ' t  tell you 
much about  the possibility of making finite predictions. This was the reason why 
I suggested these other notions. 
S u p p e s  [to Chirikov]: I want to comment on your comment  on pragmatic.  You 
say in very many of the physical situations you certainly cannot derive from 
fundamental  considerations the actual probability distribution of outcomes. 
C h i r i k o v :  I disagree ... 
S u p p e s :  I would claim tha t  in many cases you certainly cannot, but  you may 
still have very good ideas. For example, in statistical practice what  is extremely 
impor tant  for understanding the phenomena of a certain kind of level is the use 
of the normal Gaussian distribution. The normal Gaussian distribution is used 
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repeatedly in situations where we know that  this is not the exact distribution, but  
there are many  good arguments for using it. And when you est imated the mean, 
variance and covariance matr ix  in the case of multidimensional properties, then 
even though you haven' t  derived that  from fundamentals it will do an extremely 
good job of analysis, and you are not able to derive from fundamentals  what  you 
think the theoretical distribution really is. Tha t  is very important  in terms of 
understanding phenomena, when it is too hard to do things from fundamentals.  
C h i r i k o v :  You mean you cannot derive tha t  technically ... 
S u p p e s :  Right ... 
C h i r i k o v :  ... not principally. 
S u p p e s :  Yes, exactly. Technically you cannot derive. 
N o y e s :  My comment may have sounded somewhat superstitious, but  it does 
have an important  aspect when one is dealing with experimental  data. If you 
are testing any of these things and you rely on an experimental  physics t eam 
or group or laboratory, then those of us who deal with experimental  physics 
da ta  reMize tha t  some people's results are more reliable tha t  others. And you 
have to deal with this in terms of your feeling about  how the people do accurate 
experiments or not. And often you cannot put your finger on why some groups 
get good experimental results tha t  are reproducable and others do not. And so 
the human element I was talking about in terms of a professional gambler - he 
actually has a practical application in comparing physics da ta  with theory. You 
have to know what  the track record of a laboratory is in terms of producing a 
reliable results. And I had this experience myself, because I do deal with da ta  
analysis in physics. And some people you can t rus t  and some groups you can 
trust ,  some laboratories you can trust  and others you cannot. One of the best 
experimental  physicists, Emilio Segr~, made the point by saying: "You cannot 
measure errors." And I think tha t  is something tha t  has to be taken into account. 
You don' t  know what is going wrong when an experiment goes sour, and you 
really don' t  have a control over the physical situation in circumstances where 
you are dealing with what  is called systematic error in statistics. I t  is not a 
mathemat ica l  problem, it is a much more experiencial one. I am just  trying to 
emphasize that  when we are talking about  a science tha t  relies on experiment 
like physics, then these considerations are often ignored in the mathemat ica l  
t reatment .  But  they are still very real when it comes to whether you t rust  the 
test  of a theory or not, whether it be mathemat ical  or physical. 
B a t t e r m a n :  I have a question about  your characterization of determinism right 
at the beginning. Did I understand you correctly when you said tha t  determinism 
entails the time translation invariance of the laws? 
Schurz :  Yes. 
B a t t e r m a n :  Suppose I have a law which states tha t  the gravitat ional constant,  
or some other constant, will double every year which is a prime number. Wouldn ' t  
t ha t  be a deterministic law which is not t ime translation invariant? 
Schurz :  If  the law says tha t  the gravitation constant doubles every year then it 
is still t ime invariant because no initial da ta  are known, the gravitat ion constant 
is not fixed for any timepoint.  But if the law says the gravitat ion constant is at 
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some arbitrary chosen time this and this and from this point it will double twice 
a year then it will be not invariant with respect to time translation. 
B a t t e r m a n :  But it would still be a deterministic law. 
Schurz :  But in this case we will never have two states of a system which are 
identical. 
B a t t e r m a n :  Right, there will be a privileged point in time. 
Schurz :  In this case - even if we had completely accurate observations, if we had 
complete knowledge about the system - we could never make a decision about 
whether the system is deterministic. We always have a function which describes 
the development of the system in time completely. So what does determinism 
mean if you always have such a function? It means that if two systems of the 
same kind are in the same initial state their future will be the same. But if the 
states of the system cannot be described independent from time so the actual 
time that is always a parameter of the state of the system, then we can never 
have two systems of the same state. This is a problem in this concept. Am I clear 
enough? - I have not really tried to prove that the translation invariance with 
respect to time follows from this definition of determinism. So your question is 
interesting. My claim is: if you have the class of all states of systems of a given 
kind, and you don't have two which are the same, then the condition that for 
same initial conditions the next condition will be the same just makes no sense. 
It is always trivially verified. All systems will be deterministic in this sense. 
Batterman: But, there are time dependent systems, right? 
Schurz: Yes, but translation invariance does not imply time independence. It 
does only imply that the law describing the dependency on the time is invariant 
with respect to translation of the time coordinates of the system. 
Batterman: O.K. 
Chirikov: If you have a system with a Hamiltonian explicitely dependent on 
time I would call it a purely dynamical system as well or deterministic in a 
more philosophical language. It is a standard situation and the difference from 
indeterministic is in that  the time dependence is given explicitely and not by 
statistical means, not for example as a noise dependent on time when you fix 
only statistical properties of the noise but not the exact function of time. This 
is the difference I see. And as to the gravitational constant I would say it may 
look as depending on time, but actually it may depend on the gravitational 
interaction of the whole universe and in the future theory you may simply come 
back to the closed conservative system with some new, different interaction, 
different Hamiltonian and with some different new universal constants. So this 
is a very particular case of course, nobody even knows if it depends on time or 
not. But if you have the explicitely given time dependence of the Hamiltonian 
there is of course no difference from a conservative system as far as it concerns 
determinism. This is my understanding. 
B a t t e r m a n :  I was just wondering whether, conceptually, determinism entails 
time translation invariance. It seems that I could imagine that there is a dis- 
tinguished point in time, and I could construct some law, involving for instance 
the primes, which would seem intuitively deterministic but nevertheless not time 
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translation invariant. 
Ch i r i kov :  I would also say tha t  deterministic is somewhat  unclear, not very well 
defined the notion, because it is not physicM, I am sorry. 
Schurz :  Tha t  was why I wanted to give some definition. 
C h i r i k o v :  You see the usual notion is tha t  of a dynamical system, sometimes 
we call it purely dynamical - to emphasize tha t  it is not a stochastic system, not 
a statistical one. 
S u p p e s :  I have a comment  on this t ime dependence. Certainly we can give a 
general characterization tha t  we expect the existence of a unique solution for 
the given boundary and initial conditions and smoothness conditions. 
Ch i r i kov :  ... and for this given t ime dependence. 
S u p p e s :  We can certainly write a system of classical particle mechanics where 
the forces are dependent on t ime explicitly and they are not translation invari- 
ant. I mean that  is certainly conceptually straightforward to this and it meets 
counterfactual criteria. Tha t  is, you can have different initial conditions and ev- 
erything still is going to work and be determined with the appropriate  smooth- 
ness conditions. I think tha t ' s  a generalization. I t  certainly is one tha t  you can 
find in the physical literature. But  then you could not prove invariance under 
t ime translation for such systems. 
Ch i r i kov :  This simply means tha t  then the question of t ime invariance is not 
answered. 
S u p p e s :  Yes. 
Schurz :  I am not sure about  the answer to this question. I said it was a conjec- 
ture. My consideration was about  the possibility tha t  t ime is causally efficient, 
so the laws describing the dependency of the forces on the time are themselves 
not invariant with respect to translation in time. If  this is the case and I con- 
sider two different states of the system, then even if they are the same in all 
respects, they are at different time-points,  and so if the future development of 
these states is different then the reason for this might be just tha t  there initial 
t ime was different. 
S u p p e s :  No, no, you have the same variation of possibilities of initial and bound- 
ary conditions so you have many  possible trajectories. I mean tha t  it is very 
straightforward in terms of physical conceptions, not something strange here. 
You have smooth forces as a function of time. When you say tha t  the energy 
situation is changing, you are not saying this is fundamental physics. You are 
simply saying you can have ... 
Ch i r i kov :  ... an open system. 
S u p p e s :  An open system, yes ... for example you are expending ... 
Schurz :  Maybe this is a misunderstanding. I meant  that  the fundamental  laws 
of the differential equation are invariant with respect to translation in time, not 
those boundary conditions. 
W e i n g a r t n e r :  I want to make a small remark that  there is a problem with 
invariance of fundamental  laws with respect to time. The  problem is with neutral  
K-mesons which are responsible for a small violation of CP-invariance (charge- 
pari ty invariance). 
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C h i r i k o v :  Time reversibility? 
W e i n g a r t n e r :  Yes, Past-Future invariance of the fundamental  laws. The  CP- 
violation affects indirectly t ime reversibility because one assumes CPT-invar-  
iance, the combination of charge, pari ty and t ime which has been always con- 
firmed so far. So if the CP, the charge-parity is violated in some special cases 
with neutral  K-Mesons, then the t ime has to outbalance this violation. And tha t  
means tha t  there could be problems with the time invariance, t ime reversibility 
of the fundamental  laws. This is a big problem and I think there is no solution to 
this so far and many  do not even permit  themselves to think what  would follow 
in a lot of consequences from that.  
C h i r i k o v :  We permit  ourselves everything here ... haha. I simply would like to 
mention tha t  indeed there is a problem of t ime reversibility or irreversibility in 
statistical physics, and one answer - some people speak about  this - one solution 
of this irreversibility is including the CP-violation. But  in my opinion, this is a 
too special event to explain the whole thing. 
W e i n g a r t n e r :  Most think tha t  way. But I am not sure whether we should be 
satisfied with that .  
C h i r i k o v :  You don ' t  need to involve such a very special interaction even though 
it is virtually present. You don ' t  need, you can explain it in a simpler way, in a 
cheaper way. 
W e i n g a r t n e r :  Tha t  would be nice. 
S u p p e s :  I want just  to make a comment on your reducing the problem to fun- 
damental  laws. I would express scepticism about  that.  I don ' t  know how you 
make an argument that there are fundamental laws. It does not seem to me that 

that's an easy thing to establish. 
Schurz: Maybe you are right. I made these conjecture because it were interesting 
if the notion of determinism would imply some invariance. If one has no clear 

distinction between fundamental laws and boundary condition, my idea would 

not work. 
Miller: Let's change the subject. You said - I think - that the logistic function 

does not produce a random sequence. 
Schurz: I had a talk with an expert from our Mathematics Department in 

Salzburg. He is working on the logistic function and much more expert than I 
am and he told me that for almost all initial values the logistic function gives 
indeed random series if you code the outcome into zero and one, into two halls. 
But the book where I read this uses a coding into three intervals, one, two and 

three. And with this coding it does not. 
Miller: It's certainly true that it does not give you numbers with equal distri- 

bution, it is not symmetric in the three parts. 
Schurz: It is not symmetric, but also certain combinations of the three digits 

do never occur. 
Miller: But is it necessary for randomness that every combination occurs? It is 
necessary for the yon Mises-definition of randomness that every sequence should 
eventually occur as a part of the whole sequence. Is it necessary on the compu- 

tational complexity definition? 



148 Batterman, Chirikov, Miller, Noyes, Schurz, Suppes, Weingartner 

Suppes :  Yes, because Kolmogorov sequences are von Mises sequences. 

Ch i r ikov :  No, this is a question, let me just mention. This implication is only 
true when you have ergodicity. But the typical dynamical systems are not er- 
godic, yet they can be algorithmically complex which is called a chaotic compo- 
nent of the motion. Then, it does not work, this implication. 
Suppes :  But the implication I am referring to does not involve any assumptions 
about  dynamical systems. This is a phenomenological characterization where 
you are only looking at the sequence, not what generates it, and there is a clear 
theorem that  Kolmogorov complexity implies yon Mises' randomness but  not 
vice versa. 
Mil ler :  Are there not more subtle definitions of randomness that  take account 
of the finite initial segments? A sequence beginning with a trillion ones and then 
becoming von Mises random is von Mises random, for it has limiting frequencies. 

Suppe s :  No, because in the infinite case it is Kolmogorov random. 

Mil ler :  But it is not Martin-Lhf random, as far as I know. 
Suppe s :  It is if you take the infinite. You have to distinguish between the infinite 
sequences and the finite sequences. 
Mil ler :  But  only the finite sequences can matter  empirically or phenomenolog- 
ically. 
Supp e s :  You know, 'phenomenological' in an ideal sense. I agree you must distin- 
guish, but  it is quite a different matter  when you talk about the finite sequences. 
Then there's a very different arena of discussion, with much less agreement and 
sharpness of results in the finite case. 
B a t t e r m a n :  In John Carman's book, "A Primer on Determinism", there is an 
argument to the effect that the length relativized complexity of a finite sequence 
resulting from tosses of a biased coin will fail the randomness test. However, if 
you further conditionalize on the weight, defined as the number of heads, say, in 
sequence, you can restore the intuition that  the sequence is random, even though 
the relative frequency of heads isn't 1/2. 
Ch i r ikov :  I like just to mention what the situation is in my understanding. I am 
not a mathematician but a person interested in this Kolmogorov theorem. The 
situation is quite opposite: there is a theorem that  almost all finite sequences 
are random even though you cannot calculate their complexity. 
B a t t e r m a n :  Oh, that 's  true. 
Ch i r ikov :  Why? No infinite sequence is random according to the prior definition. 
if you assume that  the Kolmogorov complexity, not per unit t ime but  the whole 
complexity of the sequence must be equal, like for finite sequences, just to the 
length of the sequence, then this never happens. It  is a very interesting theorem. 
Always you can find some sections of the infinite sequence which would have less 
complexity, namely the length of this segment minus its logarithm. This was one 
reason why physicists and some mathematicians turn from the total complexity 
of the sequence to the specific complexity per step, or per unit time. For the 
finite sequences everything remains OK., nothing special happens besides that  
you cannot calculate whether a particular finite sequence is random or not. 
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Schurz :  My trouble on this notion was whether the notion of algorithmic com- 
plexity makes good sense in the finite case, because it depends on the program, 
on the commands, and the translation into the universal Turing machine intro- 
duces some constants. The length differs from the length of a Universal Turing 
machine by a constant. 
S u p p e s :  There is a beautiful article by Kolmogorov in an Indian Journal which 
gives a very nice characterization for finite sequences and the whole point is, 
the delicate computat ion there by Kolmogorov is, depending on the length of 
the sequence, the number of algorithms tha t  you must test. Clearly, if you test  
all algorithms, a finite sequence will not be random and the whole point of 
Kolmogorov's  ... 
C h i r i k o v :  No, no, no. I t  depends on the length of the algorithm. You always 
can find an algorithm. One is just  the copying machine. 
S u p p e s :  But the important  thing about  Kohnogorov's delicate computat ion is 
exactly how much you should test a finite sequence. I t  is quite a subtle argument  
as to exactly how to characterize the testing. And I don' t  think it is really 
completely agreed upon even now, but the definite problem is far beyond the 
simple Turing machine with a constant to analyze ... 
Mi l le r :  These ideas about  finite random sequences were already in Popper ' s  
"Logik der Forschung", sections 51-64, in 1934. If  you test  a finite sequence too 
much, then it will, by von Mises's standards,  turn out to be non-random. For 
sequences of length 2 n, if you just  select by subsequences of length less than  
n, then you can give a definition of finite random sequence. Now Popper ' s  own 
definition was shown by Ville not to be satisfactory. 
S u p p e s :  Tha t  is a rather  complicated problem. 
Mi l le r :  Yes, but the idea that  you are mentioning from Kolmogorov is quite old. 
S u p p e s :  The virtue of Kolmogorov is a very detailed calculation. T h a t  is the 
virtue. 
Mi l le r :  Do we agree tha t  the logistic function produces random numbers? 
Schurz :  One of my considerations was also that ,  if I am right, then no deter- 
ministic system with discrete finite space can be algorithmically random in the 
infinite case. I think a consequence of this is tha t  there can be no computer  gen- 
erated random numbers, because you always have a finite program which knows 
all the transitions between the discrete states and so we have a finite recursive 
procedure which may compute every sequence of every length. So if one takes 
this concept seriously then no computer  generated random numbers exist. This 
troubled me because I have read a lot of books where some mathematicians are 
proud to be able to produce random sequences with help of computer  programs 
and so with help of discrete and finite spaces. Maybe someone has an answer to 
this. 
Ch i r i kov :  You are speaking about  infinite sequence on a discrete lattice of finite 
size? 
Schurz :  Yes. 
Ch i r i kov :  You may consider this but you also may consider a finite discrete 
lattice and finite sequences. Then this is a question ... 
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Schurz :  But  this is a difference. 
Ch i r i kov :  In this limiting case you are right. But  also you may consider discrete 
lattice, but infinite. 
Schurz :  With no boundaries... 
Ch i r ikov :  Then I don ' t  know the answer. 
Schurz :  Then it would also be possible, because there is no finite description of 
all the transitions. 
Ch i r i kov :  Maybe, maybe not, I don ' t  know. 
Schurz :  I had this picture because in the usual statistical definitions of random- 
ness or in the usual statistical setting you have a discrete state space and you 
consider infinite sequences. 
Ch i r ikov :  Discrete space is only in quantum mechanics. 
Schurz :  No, I mean in statistical computat ion - you have zeros and ones, so you 
have a finite number of possibilities. 
S u p p e s :  It  seems to me tha t  everyone who really talks about  this in detail in- 
troduces the modifying phrase 'pseudo'.  So you talk about  pseudo-random gen- 
erators and there have been recently some very large pseudo-random sequences 
generated. I was just at  a conference, and they have found that  one has to be 
extremely careful about  these generators for very long sequences, because after 
all the whole point is, tha t  you have a relatively short code for generating the 
pseudo-random numbers. So you know already that  you have a short description 
of how to get them. And I don ' t  think tha t  anybody thinks ... I mean, what  you 
say is right, they are pseudo-random numbers. Everybody recognizes tha t  and 
it is not really a conceptual problem. 
Noyes :  You said, I believe, at the s tar t  of your talk, that  in order to talk 
about  lawfulness and determinism you have to make counterfactual s tatements ,  
implying tha t  this is a well known fact. I t  is not well known to me, and I need 
guidance. 
Schurz :  In the li terature on philosophy of science it was discussed from the 
40s to the 70s all the time. Also in the discussion of Charles Sanders Peirce, he 
claims tha t  you need to define these things by using counterfactuals. There  is 
lots of literature. 
Noyes :  Do you have a specific reference? 
Schurz :  Well, Nelson Goodman,  "Fact, Fiction and Forecast" is one of the 
classical books. Maybe you can give him some additional. 
S u p p e s :  Somebody like Stalnaker, for example. I am personally sceptical. 
Schurz :  You are sceptical? Let 's  put  it this way. Consider the theoretical de- 
scription of a probabili ty space discussed here. They are natural  counterfactual 
devices interpreted in a way tha t  requires no special counterfactual logic. They  
are described in a perfectly straightforward extensional set-theoretical way. So 
the reduction is quite straightforward for ordinary probabili ty statements.  The  
issue is, for some of the logicians like Stalnaker, as to whether you can get along 
with purely set-theoretical and probabilistic accounts or if you need something 
more. Tha t ' s  where one gets into an argument.  But  for the sort of thing we are 
talking about  here, I think the extentional reductions so to speak are very good, 
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relatively straightforward and quite easy. For example the probabili ty space char- 
acterizing all possible paths. 
Mi l le r :  All paths, but not all possible paths. 
S u p p e s :  I use the ordinary way of speaking. But  possible here is a redundancy. 
Schurz :  Well, I mean, the problem comes in if you want to define what  it means 
tha t  a particular system is deterministic. All what  you can do is to describe its 
actual t ra jectory - but its actual trajectory, is it really deterministic? Wha t  does 
this mean? I t  means tha t  if the system would [emphasized] have the same state  
at two different times, then its future developments would be the same, too. 
B a t t e r m a n :  You have a deterministic system when it is impossible for a single 
t ra jectory to branch. 
Schurz :  No, no. 
B a t t e r m a n :  Otherwise there will be from some state, two possible states at  
some future time. 
Schurz :  But  tha t  makes no sense - I am sorry - in the actual description of 
reality because what  should it mean that  a single trajectory branches? I t  means 
tha t  if you have two systems and it could be tha t  both systems are in the same 
state  here then one system goes along this line and the other system goes along 
tha t  line. And if you look at the particular single system and you always have 
such a single trajectory, it has only one state at one time. 
B a t t e r m a n :  Presumably, quantum mechanics is indeterministic because if you 
know the exact s tate  at a given time - the psi-function - then at best you can 
predict probabilities of future states. So, there is a certain probabili ty tha t  at  
some future t ime the system will be in one state, and also a degree of likelihood 
tha t  it will be in some other state at that  time. 
Schurz :  So you define your determinism with respect to what is implied by the 
set of laws describing the system. If the set of laws differential equations imply 
tha t  such trajectories are possible these laws are not deterministic. But  I want 
to have a definition of determinism which is independent of any given set of laws 
- a definition which may  be applied without tha t  I know what are the real laws. 
C h i r i k o v :  You want to consider it analyzable as a function. 
Schurz :  Yes. 
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A b s t r a c t .  We suggest that the derivation of the free space Maxwell Equations for clas- 
sical electromagnetism, using a discrete ordered calculus developed by L.H.Kauffman 
and T.Etter, necessarily pushes the discussion of determinism in natural science down 
to the level of relativistic quantum mechanics and hence renders the mathematical phe- 
nomena studied in deterministic chaos research irrelevant to the question of whether 
the world investigated by physics is deterministic. We believe that this argument rein- 
forces Suppes' contention that the issue of determinism versus indeterminism should 
be viewed as a Kantian antinomy incapable of investigation using currently available 
scientific tools. 

1 I n t r o d u c t i o n  

I am delighted to have had the opportunity to bring to this Symposium the 
question of whether recent work connecting relativistic quantum mechanics to 
the classical relativistic theory of fields sets the interpretation of "deterministic 
chaos" in a rather  different - -  and possibly illuminating - -  context. My title 
comes from the fact tha t  I had already raised this point at the 15 th annual 
international meeting of the Alternative Natural  Philosophy Association (Noyes 
(1994a)). I did not gain much enlightenment on the significant and difficult issues 
raised from the resulting discussion. I hope that,  thanks to the passage of time, 
subsequent work with L.H.Kauffman (Kauffman and Noyes (in press)) and the 
different types of expertise present at this Symposium, I will gain a broader 
perspective from your comments. 

The  first argument  I mount against the relevance of "chaos research" to the 
issue of determinism rests on the fact that  physics is a science of measurement.  
I f  one accepts the operational methodology implied by this s tatement ,  and rec- 
ognizes tha t  the smallest space interval Ax and time interval At which one can 
measure is always bounded from below by the current s tate of technology, then 
there is a limit to the accuracy to which the initial conditions for prediction 
using a classical, deterministic system of equations can be stated. W h a t  chaos 
research has demonstrated is tha t  there are many non-linear classical systems 
which require as much input information to obtain a "prediction" as can be 
obtained from the result "determined" by solving the deterministic equations. 
Hence the issue becomes irresolvable from the point of view of physics once one 
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is asked to make a "prediction" that  requires more accuracy in the input than 
is available from current technology. The next section tries to spell this out by 
invoking NO-YES events, and in particular the not-firing or firing of a recording 
counter, as the paradigm for measurement in physics. 

So far, this states a point of view, and may not sound particularly compelling. 
But  when one asks where the classical equations come from, the argument can 
be tightened. So far as I can see, the only classical systems of equations which 
do not depend in detail on the structure of matter  - -  and hence on quantum 
effects - -  are electromagnetism and gravitation. Here an ancient piece of work 
by Feynman, recently resurrected by Dyson (Dyson (1990)) and extended by 
Tanimura (1992), comes to our aid. Dyson derives electromagnetism and Tan- 
imura also derives gravitation from Newton's second law and the commutat ion 
relations of non-relativistic quantum mechanics! This paradoxical result is shown 
by our analysis to depend only on the assumption that  measurement accuracy is 
finite, fixed and bounded from below. By an appropriate and significant extension 
of the calculus of finite differences to a non-commuting discrete ordered calculus 
(DOC), due to Et ter  and Kauffman (Etter and Kauffman (in preparation), and 
Kauffman and Noyes (in press)), this derivation becomes rigorous in a very gen- 
eral context. Accepting this derivation, the classical equations require finite and 
discrete measurement accuracy to ground them in physics. But then, to t reat  
them as deterministic goes beyond the range of applicability of their foundation. 
This puts bite into the argument that  classical, deterministic equations are al- 
ways approximate, and hence that  the context in which chaos research is usually 
set has no validity within the world of physics as I understand the term. This 
argument is presented in more detail in Section 3. 

A second reason for taking the classical equations to be approximate is the 
underlying non-determinism of quantum mechanics. Strictly speaking classical 
equations apply only at large enough distances so that  the particles which probe 
the fields are decoherent in the quantum mechanical sense. Hence, we argue that  
"deterministic chaos" is always an approximation, and that  any fundamental 
discussion of determinism must be conducted at the quantum level. This pushes 
the discussion back to the level of Bell's Theorem, which is often interpreted 
as showing that  demonstrable laboratory effects (e.g. Aspect's experiment) pre- 
clude the possibility of a local, deterministic description of natural science. The 
relationship between measurement accuracy and "decoherence" in our context 
is discussed in Section 4. 

The conflict between quantum mechanics and Einstein locality raises a third 
issue about the approximate character of classical physics. This is the problem 
of how to construct a relativistic quantum mechanics which has classical field 
theory as a well defined correspondence limit. The specific measurement limita- 
tion involved is clearly the fact that  when one at tempts to measure distances 
shorter than h/2mr either directly or indirectly, one must take proper account 
of the degrees of freedom corresponding to electron-positron pair creation. We 
note tha t  going below these bounds requires a relativistic quantum mechanical 
analysis. This provides a third reason why the deterministic interpretation of 
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classical physics can never be more than an approximation. We explore, briefly, 
in Section 5 how a novel theory based on bit-strings might meet this problem. 
Our concluding section returns to the philosophical issues. 

2 N o - Y e s  E v e n t s  a s  a R e l a t i v i s t i c  M e a s u r e m e n t  P a r a d i g m  

My approach to the questions of law and prediction in physics - -  rather than in 
the broader context of (Natural) Science used in the title of this Symposium - -  
starts from the trite comment that  physics is a science of measurement. I take 
this characterization of physics as a methodological requirement. Unfortunately, 
from my operational and pragmatic point of view, this dictum is much more 
often honored in the breach than in the observance. In my practice of physics I 
do not allow my fundamental paradigms for how theoretical physics should be 
connected to laboratory experience to rest on considerations that  are not in some 
sense bounded by the actual experimental accuracy of current measurements. 

This statement of methodological principle is unabashedly taken from Bridg- 
man's (Bridgman (1928)) heroic at tempt to rescue physics from the philosophers. 
It  is usually assumed that  his program failed to provide a proper conceptual 
foundation for the startling and enormously fruitful developments in relativistic 
cosmology and elementary particle physics which have provided contemporary 
scientists with such a rich picture of the physical world accessible to precise mea- 
surement. But the actual reconciliation of quantum mechanics with relativity, 
and in particular the creation of a theory of "quantum gravity" tha t  commands 
consensus among the specialists, still eludes us as this century draws to a close. 
I have argued in more detail elsewhere (Noyes (in press)) why a return to Bridg- 
man's principles might help resolve some of the thorny problems that  still face 
US. 

My approach is also informed by the S-Matrix program of Chew and Heisen- 
berg which - -  according to Schweber (1994) - -  really started with Dirac. The 
basic point for me is that  by going to large enough distances (and hence, nec- 
essarily, times) in the experimental setup, momentum and energy can always 
be measured to arbitrarily high accuracy using essentially classical physics tech- 
niques and concepts. In contrast, direct space-time measurement at short dis- 
tance is always restricted by the uncertainty principle and looses direct opera- 
tional meaning. Hence the formal symmetry between position and momentum 
measurement in quantum mechanics is destroyed in practice. As Chew used to 
put  it, short distance space-time is an artifact of Fourier transformation and 
cannot have physical significance. Unfortunately, from my point of view, he did 
not take the next step and reject continuum mathematics as well. 

This next step has, for me, a long history which is briefly explained in my 
contribution to PhysComp'9~ (Noyes (1994c)). The fundamental mathematical  
position comes from a necessary aspect of the practice of computer science, 
namely that  you must name a largest integer N and the fixed, finite memory 
size in advance. If you need or wish to introduce larger numbers into the calcu- 
lation, or change the size of the memory, you must re-examine everything you 



Decoherence, Determinism and Chaos Revisited 155 

have done up to tha t  point. This obvious fact has been particularly emphasized 
by David McGoveran (McGoveran and Noyes (1989)); in effect, he makes it into 
a methodological principle. Note tha t  this not only rules out the continuum, but  
also mathemat ical  induction. Few theoretical physicists and almost no mathe-  
maticians are willing to take such a drastic step. In elementary particle physics, 
whenever a theory is examined empirically, the events analysed, the model of 
the appara tus  used in the analysis, and the theories under consideration are 
necessarily reduced to a finite number of bits on magnetic tape or some other 
digital form of memory. Tha t  this procedure must  be used in order to test  any 
empirical aspect of any theory may, perhaps, make our methodological puri ty 
seem less outrageous. 

This much discussion seems necessary to justify my measurement paradigm 
based on what  I call NO-YES events. The model I have in mind is a laboratory 
counter and associated memory storage which records whether an event did not 
take place in a t ime interval At in a volume Ax 3 with relevant linear dimen- 
sion Ax (a NO event) or did take place (a YES event). I emphasize that ,  when 
it comes to precise measurement,  the absence of a counter firing is often more 
important  (eg in measuring "background") than  its presence. For our paradigm 
we assume tha t  the temporal  resolution of the measurement  At and the spacial 
resolution Ax are the best that  can be achieved with current technology either 
by direct measurement,  or indirectly as when one uses a Michelson interferom- 
eter to measure relative positions. Note tha t  in order to relate such relative 
measurements  to macroscopic laboratory coordinates, we would have to discuss 
the measurement  accuracy with which we can connect the different space-time 
scales. 

Up to this point we have treated length and t ime measurement  as distinct. 
But  the System International, employed universally by physicists in reporting 
the results of measurement,  defines the ratio of space to t ime units by the integer 

c - 299 792 458 meter/second (1) 

Thus, following current practice, we are no longer allowed to define Ax and At  
separately when specifying our lowest bound on measurement  accuracy. In fact, 
we must make the scale invariant s ta tement  tha t  

z~X 
- -  1 ( 2 )  

ca t  

in any system of units which allows us to talk about  NO-YES events in a precise 
way. 

We can summarize the content of this section by the phrase: 

P h y s i c s  is c o u n t i n g  
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3 C l a s s i c a l  R e l a t i v i s t i c  F i e l d s  f r o m  D O C  

In 1948 Richard Feynman showed Freeman Dyson a remarkable "proof" of the 
Maxwell Equations starting from the non-relativistic quantum mechanical com- 
mutat ion relations and Newton's second law (Dyson (1989)). Dyson no longer 
retains contemporary records of this conversation, but  was able to reconstruct 
and publish the proof using notes he had made at a later date (Dyson (1990)). 
Although Dyson finds the proof paradoxical, we have claimed (Noyes (1991)) 
that  in fact it makes good sense in terms of the new, fundamental theory dis- 
cussed in (Noyes (1994c)). 

Briefly, the argument goes as follows. The Feynman postulates are that  

[xi,xj]-=O; [xi, m:i:j]-~ ~Sij; Fi(x,~;t)=m5:i; i , j e l , 2 , 3  (3) 

However, the use made in the proof of the second postulate (i.e. of the commu- 
tat ion relation between position and velocity) in no way requires the constant on 
the right hand side to be imaginary, or scaled by Planck's constant. The linearity 
in the mass parameter m allows us to divide through by m and replace it by the 
postulate 

xj]  = (4) 

with ~ any constant with dimensions of area per unit time. For a particle acting 
under any force which obeys Newton's third law with respect to a reference par- 
ticle, we know that  the area (measured in units of Ax 2) swept out by the line 
from some appropriate center to the particle in a constant time interval (mea- 
sured in units of At) is constant. This observation fixes t~ in an scale invariant 
manner. Note that  this generalization of Kepler's second law is kinematic rather 
than dynamic. It leaves both the mass standard and the mass ratio between the 
particle of interest and the reference particle arbitrary. Similarly, since Newton's 
second law is linear in mass, we can replace it by the assumption that  the ac- 
celeration (5) is a function only of position, velocity and time. Finally, for any 
single particle for which the charge per unit mass is a Lorentz invariant, we can 
also divide the mass out of Maxwell's Equations, and find that  the whole deriva- 
tion is scale invariant because it depends only on fixing, arbitrarily, the units of 
length and time. 

As is noted in (Kauffman and Noyes (in press)): 
".... this aspect of scale invariance had already been introduced into the subject 
by Bohr and Rosenfeld in Bohr and Rosenfeld (1933). In their classic paper, they 
point out that  because QED depends only on the universal constants h and c, the 
discussion of the measurability of the fields can to a large extent be separated 
from any discussion of the atomic structure of matter  (involving mr and e2). 
Consequently, they are able to derive from the non-relativistic uncertainty rela- 
tions the same restrictions on measurability (over finite space-time volumes) of 
the electromagnetic fields that  one obtains directly from the second-quantized 
commutation relations of the fields themselves. Hence, to the extent tha t  one 
could "reverse engineer" their argument, one might be able to get back to the 
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classical field equations and provide an alternative to the Feynman derivation 
based on the same physical ideas." 
This point of view is also discussed in more detail elsewhere (Noyes (in press)). 

Unfortunately, this physical argument has not proved compelling for many 
people in the relevant professional communities. We have therefore been forced 
to invoke the aid of a first rate mathematician and to go deeper into the mathe- 
matical foundations of the calculus of finite differences (see Kauffman and Noyes 
(in press)) than might be expected. This suggested further developments to T. 
Etter, which are now being pursued (see Etter and Kauffman (in preparation)). 

The basic physical point from which the discussion of the impact of finite 
measurement accuracy on the relation between position and velocity starts is 
that  velocity has to be defined as the ratio of a finite space interval to a fi- 
nite time interval. We also restrict the problem to the "trajectory" of a single 
particle, and a finite shift along that  trajectory. Then measurement of veloc- 
ity must involve either first the specification of position and then the finite 
shift to a new position from which the velocity can be calculated, or first the 
shift from a previous position at some velocity and then the specification of 
the new position consistent with that  velocity. These two velocities will not, in 
general, coincide. Note that  this operational definition of velocity precludes the 
possibility of specifying both position and velocity at the same time. Thus the 
possibility of non-commutativity arises, and careful investigation of the possibil- 
ities leads to the discrete ordered calculus (DOC) of Etter and Kauffman. This 
(non-commutative) calculus of finite differences does, indeed, provide a rigorous 
mathematical context for the Feynman-Dyson "proof", allowing us to drop the 
quotation marks. 

Exploring the mathematical niceties of this generalization of the calculus of fi- 
nite differences would distract us from the thrust of this paper. Fortunately, when 
I recently showed (Kauffman and Noyes (in press)) to my colleague, M.Peskin, 
he rapidly rewrote the proof in the context of the Heisenberg representation of 
quantum mechanics. I had already suspected that  this might be possible, and 
T. Etter informs me that  his starting point for the construction of the DOC 
was essentially the same. The difficulty with adopting this point of view is that  
what operational context the Heisenberg formalism fits into is by no means ob- 
vious. So, for mathematical and physical clarity, one needs to invoke the DOC 
and discuss the relationship between measurement accuracy and the DOC. To 
make this paper self-contained I reproduce here the simpler (but conceptually 
problematical) derivation carried through in the context of the Heisenberg rep- 
resentation. I am much indebted to Peskin (1994) for allowing me to quote the 
following proof. 

Define 
= x u  - u x  = [x,  u] (5) 

where U is the time shift operator from X to X'  in time At (eg U = e-iHz~t). 
Notice that  

(AB)" = [AB, U] = [A, U]B + A[B, U] = AB + Af3 (6) 
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as required. 
Postula te :  

Rewri te  2 as 

1. [ X i , X j ]  = O 

[x~, IX,, u]] = - Ix , ,  [u, xd] - [u, [x,, xA] 

and noting that [U, [Xi, Xj]] = [U, 0] = 0 we find that 

nSij = [Xi, [Xj, U]] symmetric in i , j  

T h e n  

Now define 
1 

VzHt = I [[Xa.,.,~kl,Xz ] 2--~ejm 

Bu t  this cyclic sum vanishes by the  Jacobi  identity. Thus  

VzHt = 0 

which is one of the  two Maxwell  equat ions we set  out  to derive. 
Finally, define 

Ei = Xi - eijk Hk 

We wish to prove t ha t  

OH~ 
O----t- + eijkVjEk = 0 

Firs t  we need to  define O/Ot by 

T h e n  

[7= d H  = OH 
dt ~ + (j(" V)H 

Ot 

= ~ k z ( [ 2 k ,  2 ,])  -- 

= !e~kl,~ [2k, 2,] -- 2 -~&~k, [ [2k ,  X,], &] 

(7) 

(8) 

(9) 

(lO) 

(11) 

(12) 

(13) 

(14) 

(15) 

1 
= ~ e i jk  - ( - 1 )  - e~jkekl .~e .~ab 
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1 

1 

n o w  

for i = 1, eg 

SO 

1 1 5iabXj[[~(a~(b],~(j] 

[xo,x ] (16) 

(17) 

= [21,22] [2a,21] + [21,2a] [2~,22] =o (18) 

s 1 1 

OH 
- Q E D .  

Ot 

We conclude that  the free field Maxwell Equations are a formal consequence 
of assuming finite time shifts along a single particle trajectory and showing that  
the changes in velocity (accelerations) have the form of the Lorentz force law 
(i.e. m F  = e E  + ev • H )  for electromagnetic fields acting on a particle. This 
formula allows us to separate the acceleration into a vector which is a function of 
position and time (electric field) and produces an acceleration in that  direction, 
and a second vector - -  also a function of position and time - -  which acts at 
right angles to the velocity and is proportional to the magnitude of the velocity 
(magnetic field). 

We emphasize that  given the fields, we can calculate the motion of a single 
particle passing through them, or given the trajectory, we can calculate the fields 
which would produce that  trajectory. Invoking Newton's third law, and treating 
the field as a carrier of both energy and momentum, we can treat  this second 
calculation as either the absorption of the radiation by the particle producing its 
motion or as the emission of the field by the particle when its motion is known. 
This language then allows us to treat  single particle trajectories as either the 
sources or sinks of the fields but not  both at once. The (insoluble) "self energy" 
problem cannot be met this way. One can achieve consistency at the classical 
level only by separating sources and sinks, as was done by Feynman and Wheeler 
in their "relativistic action at a distance" theory (Feynman and Wheeler (1945); 
Schweber (1994); Schweber (1986)). But then, in a closed system, the source 
and sink are made macroscopically (and non-locally) coherent by the energy- 
momentum conservation laws. Thus, treating the field as a locally defined and 
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causally efficacious agent is only possible in the decoherent approximation in 
which we can ignore where the radiation is coming from and where it is going. 

We will discuss this intricate question of coherence and decoherence further 
in the next section. For the moment, we emphasize that  our derivation of the 
field equations from measurement accuracy necessarily limits their applicabil- 
ity as deterministic predictors to situations in which the boundary conditions 
and the predictions are made to less accuracy than the Ax = ca t  restriction 
which allows us to derive the "differential" form of the field equations in the 
first place. Hence, if our understanding of the classical electromagnetic field is 
accepted, "deterministic chaos" cannot enter the system, and the distinction be- 
tween determinism and indeterminism eludes us. 

To complete the argument of this section, we need to extend the argument to 
the only remaining classical field, namely gravitation. At least within the frame- 
work of the Feynman-Dyson "proof", this has already been done by Tanimura 
in (Tanimura (1992)). Tentatively, at least, we accept this extension, but  will 
not be sure of our conclusion until we have a rigorous equivalent using the DOC. 
The novelty here is that  we must consider not only non-commutativity between 
position and velocity but the connectivity between oriented areas. This gives (at 
least formally) the usual tensor field in free space and the resulting non-locality 
of general relativity. Again, the field as a local, causal agent appropriate to think 
of as "deterministic" can only be a decoherent approximation. Thus, independent 
of details, we again find the phenomena of "deterministic chaos" irrelevant to 
what we can know physically. 

4 D e c o h e r e n c e ;  P e r i o d i c i t y  f r o m  M e a s u r e m e n t  A c c u r a c y  

[Spelling out in operational terms just what we mean by "decoherence" requires 
some care. I have already done this in (Noyes (1994a)) The next four sub-sections 
repeat these considerations with a few modifications.] 

4.1 T h e  G e o m e t r i c a l  P a r a d i g m  for  D e c o h e r e n c e  

To give form to our discussion of coherence and decoherence, we use the devices 
schematically illustrated in Fig. 1. We assume, initially, that  the "source" labeled 
by a question mark emits charged particles with a unique charge-to-mass ratio 
and a unique velocity v. Note that  these particles, taken one at a time, fit into 
our understanding of "particle" and "field" as established in Section 3. Devices 
which we will use to insure that ,  to some finite accuracy, these assumptions are 
true are included in the figure, and will be discussed in more detail subsequently. 
For the moment we omit the "path extender". 

We start  from the case when the detection screen beyond the double slit (see 
Noyes (1980) for a detailed discussion of the conventional experiment) exhibits 
a double slit interference pat tern whose envelope is the single slit diffraction 
pat tern for a slit of width Aw and a distance D from the detector array. We 
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Fig. 1. Measurement of coherence and decoherence of de Broglie waves using a counter 
telescope, magnetic selector, and a double slit with a path extender in one arm. 

set the parameters such that  the spacing from the center of the pat tern to the 
first interference fringe is s. Then the "wavelength" A exhibited by this coher- 
ent interference between the beams from the two slits is measured and can be 
calculated from the equation 

W S  
= - -  ( 2 0 )  

D 

We note tha t  w, s and D are length intervals that  can be measured by conven- 
tional macroscopic methods such as rods calibrated against international stan- 
dards. We take this as the paradigmatic case for specifying what we mean by 
"coherence". We emphasize that,  so far, only length measurements are implied 
and hence that  our diagram is scale invariant. 

In order to measure the "coherence length" we insert into the hypothetical  
"path" of the particle coming from one of the slits a "path extender",  schemat- 
ically represented by a wedge whose sides are mirrors. One face of the wedge 
reflects the beam to a second mirror which returns it to the second face of 
the wedge, which in turn returns it to the direction it followed in the paradig- 
matic case. The distance C from the wedge to the mirror is adjustable. C = 0 
corresponds to the simplest double slit paradigm (wedge omitted). We find ex- 
perimentally that  for a source of a particular type the (double slit) fringe system 
disappears when we reach a value Cmax or larger. We can then define the coher- 
ence length Ccoh by 

Ccoh - 2cmo  (21) 

Note that  the definition still depends directly on geometrical measurements. 
Indirectly the specification depends on the sensitivity of the detector array, since 
the intensi ty  of the pat tern along the detector array and (if the array records 
individual particulate events) the probability of a particular region of the array 
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being activated decreases as C increases. The disappearance of the interference 
pa t te rn  is our paradigm for decoherence. 

To go further in our analysis, we must measure the velocity v, or if this 
velocity is close to the limiting velocity for information transfer - -  for which 
we use the conventional symbol c - -  the momentum.  Then we can define a 
second critical parameter  called the coherence time and symbolized by Tcoh by 
the relationship 

Ccoh = vTcoh (22) 

Here we assume that  the measurement of v using the recording counters in the 
first counter telescope and the t ime from the firing of the first counter telescope 
to the firing of one counter in the detector array are consistent with each other, 
and tha t  all three clocks associated with the counters are synchronized using the 
Einstein convention. 

In the situation where the interference fringes have disappeared, we can dis- 
tinguish two paths emerging from the double slit by noting that  all particles 
which follow the longer path  arrive at the detector with a t ime delay greater 
by at  least Tcoh = C~oh/V compared to the particles which traverse the shorter 
path.  Then we know that  the two trajectories are decoherent and (in the s ta ted 
context) are classical, decoherent trajectories of classical particles (ignoring the 
single slit interference pat tern which takes higher precision to see). 

Various checks on the confidence with which we can make the above state- 
ments can depend on the measurement  accuracy to which we can establish all the 
relevant parameters.  Several such checks will occur to any experimental  particle 
physicist. Since these checks are irrelevant to our main theme, we stop our artic- 
ulation of the basic paradigm at this point, and focus on the accuracy to which 
we can measure velocity or momentum.  The main point we wish to establish is 
simply tha t  in a carefully specified context, outside of some coherence length or 
coherence time, particles can be said to follow two (or more) distinct trajectories 
for at least par t  of their history between production and detection. Inside tha t  
length, two coherent beams of the same type of particle can be made to interfere 
with a characteristic wavelength tha t  can be measured geometrically. But  asking 
where within tha t  pat tern of two coherent trajectories the "particle" is located 
cannot find an answer within the experimental setup. This is an example of the 
"complementari ty" between the wave and the particle description in our discrete 
context. 

4.2 S p a c e - T i m e  Ve l oc i t y  M e a s u r e m e n t  

The  "counter telescope" we have included in figure 1 consists of two devices 
which record the t ime of firing or of n o t  firing during some t ime interval. This 
is the next step in bringing the measurement paradigm presented in Section 2 
closer to laboratory practice. The distance between the two counters is L and 
the t ime delay between the two recordings is T. These two recordings are NO- 
YES events in tha t  whether the individual counters do not fire ("NO") or do fire 
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("YES") is recorded by two distinguishable symbols in two correlated records. 
These records can be repeatedly examined without destroying this distinction or 
the sequential ordering. In this context the velocity of a particle v is measured 
by a Y E S 1 ,  Y E S 2  pair of events and is calculated by the ratio 

L 
v T (23) 

The accuracy to which this constitutes - -  or can constitute - -  a measurement 
of this velocity cannot be adequately discussed in an article of this length. We 
simply note that  what are called "particles" in high energy elementary particle 
physics have never been demonstrated to have velocities greater than the scale 
parameter c = 299 792 458 m sec -1. Further, there is no accepted situation 
in which information in the physical or computer science sense has been trans- 
ferred at a velocity greater than this value. Demonstrable exceptions to these 
statements would be of extreme interest to the physics and computer science 
communities. 

4.3 E n e r g y - M o m e n t u m  Ve loc i t y  M e a s u r e m e n t  

The "magnetic selector" using a magnetic field 7-( perpendicular to the plane 
of figure 1 can also be considered to be a device capable of measuring velocity 
when it is properly calibrated. Its action is compatible with the Lorentz force 
law we explained in Section 3. The calibration procedures are more complicated 
than the direct calibration of rods and clocks which suffice for space-time velocity 
measurement. It is here tha t  our restriction to a particular type of particle begins 
to become important. 

If the particle is electromagnetically neutral, or if the space-time velocity is 
not distinguishable from c (up to the maximum value of 7-( available to us), no 
deflection is observed and the inverse radius of curvature p-1 is indistinguishable 
from zero. We exclude these cases for the moment because the measuring device 
invoked gives no information not already provided by the counter telescope. 
However, when a deflection (finite, non-null p) is observed, we find that  for fixed 

the radius of curvature p changes with velocity. To cut a long story short, we 
find that  if we measure velocity in units of c by defining 

v = ~(v)c (24) 

and keep the magnetic field fixed, 

/3 2 1 - / 3  2 
- -  (25) p 2 ( v )  o(  1 - 

This clearly allows us to calibrate our magnetic field to space-time measurements 
and, for a particular class of particles, to specify higher and lower magnetic fields 
over some range by the velocity-independent (over that  range) definition 

= p(v) (26) 
p0( ) 
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leaving open the units in which we ultimately decide to measure magnetic fields. 
If, as is often the case in high energy physics, it is more convenient to measure 

radius of curvature rather than space-time velocity, we can relate this approach to 
the space-component of the "four velocity" (u0, u) = (% 7~) with 72j32 = 72 - 1 
and 

u 2 
- 1 + u2;   2(u) = 1 + u2; = + l u l  (27)  

For a particular type of particle, this tells us that  u 2 is proportional to  p 2  and in 
a more articulated theory allows us to measure momentum by radius of curvature 
in a calibrated magnetic field. In this context we can ignore the (fixed) rest-mass 
of our "test particles" and keep our "momentum" measurements restricted to 
the "space-component of four velocity" or "momentum per unit mass". 

Similarly, if we measure energy by the temperature rise in a calorimeter 
calibrated to the ideal gas law for particles of the same mass, i.e. measure pressure 
per unit mass rather than pressure, we can verify that  this is consistent with the 
usual relativistic single particle kinematics 

E 2 E 2 p2 
m-- 5 = 1 + u 2 ;  m2 m 2 - 1  (28) 

and so on. 

4.4 Sca le  I n v a r i a n c e  

We have been at some pains to remove the mass scale from our basic paradigm 
for "coherence" and "decoherence" because the basic argument by which we gave 
meaning to classical electromagnetic fields (Section 3). used only measurement 
of space and time with accuracy bounded from below. To break scale invariance 
requires us to model some physical phenomenon involving Planck's constant 
and the reconstruction of relativistic quantum mechanics consistent with our 
operational methodology. Quantum mechanics can be arrived at in a number of 
ways, eg historically by the analysis of black body radiation, photo-effect, line 
spectra of atoms, finite size and stability of atoms measured using deviations 
from the ideal gas law, and so on. This is possible because the whole idea of a 
"test-particle" is basic to the classical definition of "fields", and is consistent with 
the understanding of electromagnetic fields we developed in Section 3. But  why 
the same constant/% should appear in these diverse empirical contexts remains 
unanswered. 

The cleanest breakpoint for the relativistic quantum mechanics which con- 
cerns us is the creation of electron-positron pairs or the less direct but predicted 
and confirmed effects (eg Lamb shift, vacuum polarization in p-p scattering,...) 
of these degrees of freedom (Schweber (1994)). Once the degrees of freedom due 
to the possibility of particle-antiparticle pair creation have to be included in the 
theory, even the concept of a "test particle" generates nonsense. This is obvious 
in the case of pair creation in a system containing electrons because, thanks to 
the indistinguishability of electrons, in any system which contains one or more 
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electrons initially whether the electron in the created pair and some initial elec- 
tron are on the same or different trajectories becomes ambiguous and empirically 
irresolvable at distances less than  5/2m~c. Tha t  this parameter  occurs and can 
be measured even when there are no electrons in the system under examination 
is evidenced by the "vacuum polarization" contribution to both the energy and 
the angular distributions measured in proton-proton scattering below 3 Mev. 

4.5 V e l o c i t y  R e s o l u t i o n ,  P e r i o d i c i t y  a n d  " W a v e l e n g t h "  
in a D i s c r e t e  T h e o r y  

As already noted, we assume that  information cannot be t ransmit ted  from one 
distinct location to another at a velocity greater than c = 299 792 458 m/sec .  
By information we mean anything which reduces the number of possibilities 
at the second location relative to a previously accepted, understood, finite and 
countable number  of possibilities. This allows us to specify velocities v in units 
of c by rational fractions p (N,  n) = v / c  = n / N  with N a fixed, finite positive 
definite integer which can be context sensitive. We distinguish massive particles 
from other modes of communication by the requirement that  n be an integer in 
the range - N +  1 < n < N -  1. 

We can now define velocity resolution by Av -= c /N .  This is, clearly, a context 
sensitive definition, which requires a careful investigation of the experimental  
tools at our disposal in tha t  context, and can have unexpected consequences 
such as the connection between fixed measurement accuracy and the formal 
s tructure of the classical, relativistic field equations we discussed in Section 3. 

The  context which we wish to explore first is when velocity is measured 
by the distance between two counters at positions x l A X  and x 2 A x  which fire 
sequentially at t imes t l A t  and t2At.  We assume finite and fixed measurement 
accuracy to mean tha t  Xl, x2, tl ,  t~ are integers, as discussed in Section 2. Then 
these four integers can be related to our previous definition of velocity by 

n _ x 2 - x l  (29) 
f l (N ,n )  = N t2 - t l  

Because we took N > 0 in our earlier definition, we will use the definitions 

I f t 2 - t l  > O then  N = t 2 - t l ,  n = x 2 -  xl; else N = t l - t 2 ,  n = x l - x 2  (30) 

This convention specifies positive spacial directions to be x2 > x] and positive 
t ime evolution to be t2 > tl in a finite and discrete 1+1 "space-time" with origin 

(x0,  to) = (0, 0). 
I t  is important  to realize that ,  provided A v ( N )  =_ c / N  is not the best velocity 

resolution we can achieve in the context of interest, and a resolution A v ( N x )  = 
c/2N~ is at least conceivably within our grasp, ~(N,  n) defines a periodic function 
with up to 2NT periods, provided N N T  < N~. To see this, we need only note 
tha t  

§ - 1 )n  (31) 
~(N,  n) ~ 13(ntN, ntn) = f l (ntN,  n + (nt - 1)n) = n t N  
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But  this "periodicity" can have some unexpected restrictions, if we take our 
physical restriction on A v  seriously. In particular, for the two counter firings 
specified in the last paragraph, and the A v ( N ~ )  = c /2N~ just  assumed, we are 
restricted to space and t ime intervals between the two firings which satisfy the 
constraint  

x2 - x l  c A t  (32) 
I t~--~_tl ] > 2NxA------ ~ 

Otherwise the two counter firings would measure a velocity to a resolution bet ter  
than  c / 2 N x ,  contrary to hypothesis. We also have the further restriction ~-~nx = 1 
from the general argument given in Section 2 justifying Eq. 2.2. Then we can 
define an event horizon Rx = N z A x ,  and a t ime boundary Tx = N x A t  which 
restrict the 1+1 integer coordinate space-time points we consider to the integer 
square in 1+1 space-time 

- Nz  <_ t < +Nz; - N ~  < x < +N~ (33) 

Thus any velocity measurement we consider restricts the "integer coordinate 
intervals" we consider by the equations 

Ix2 - xl[ = n t N  < [t~ - tl[ = n t N  (34) 

Our next concern is to understand in more detail the "state" of a particle 
with "constant velocity" implied by the concept of fixed, finite velocity resolu- 
tion we are developing. In a continuum theory the two "point events" (x l , t l ) ,  
(x2,t2) determine a line in 1+1 space-time which, according to Newton's  first 
law, can be extrapolated to include all points between - o o  and +oo outside the 
interval so defined, and interpolated to include all points within this interval, 
so long as no "force" acts on the particle. In contrast, our assumption of fixed 
velocity resolution restricts the positions where a constant velocity particle can 
appear,  once the two counter firings are measured, to a very small set of in- 
tegers. Assume first that  n and N have no common integer factor other than  
1. Then no interpolated positions between the two counter firings are allowed 
for the velocity state 13(N, n). The only coordinate pairs we are allowed (by the 
construction developed so far) are the extrapolated event positions 

( x (N ,  n; nt), t (N ,  n; nt)); (35) 

where 

x ( N ,  n; nt)  = x l  + n(n t  - 1); t ( N ,  n; nt) = tl  + n(n t  - 1) (36) 

Here we allow nt as well as n to be negative, so long as the event horizon 
constraints 

- Nx  < x ( N ,  n; nt )  < +Nx; - N x  < t ( N ,  n; nt)) < +Nx (37) 

are met. 
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Note that  this periodic sequence of space-time positions where a third counter 
might (but need not) fire also need not include the "origin" (0, 0). A naive inter- 
pretation of our formalism would allow us to include this origin as "physical"; in 
a more detailed discussion we would show why we must use caution in making 
this part  of our construction. When we have shown how to measure quantum 
interference phenomena using only counter firings as our paradigm, we will see 
that  the inability to locate the origin "absolutely", but only with an uncertainty 
Ix2 - x l  IntAx, and positions "relative" to some unique reference event only with 
an uncertainty Ix2- xl lax  is the analog in our theory of the inability to measure 
"absolute phase" in conventional quantum mechanics. 

Here we can take only the preliminary step of relating this finite and discrete 
model of positions where counters can fire sequentially to the paradigmatic case 
of the measurement of coherence length illustrated in Figure 1. Suppose (Xl, t l )  
and (x2, t2) are the space-time coordinates for the firing of the entrance and exit 
counter before the magnetic selector, and that  the counters are thin enough and 
the clocks accurate enough so that  all four numbers are integers in units of Ax 
or At = cAx, making N12 ~ L / A x  and D12 = T / A t  integers and ]3(D12, N12) 
a rational fraction. If N12 and D12 have a common factor AfT, so that  N12 = 
NTn12, D12 = NTd12 and fl12 = nl2/dl2, we could obviously postulate that  the 
signal emerging from the counter telescope is a periodic phenomenon with NT 
periods, spacial periodicity A = nl2Ax and temporal periodicity T = d12At and 
start  articulating this model in such a way that  the phenomena described in our 
paradigm defining coherence-decoherence can be reproduced. 

We cannot flesh out this model in detail here, and stick to a few elementary 
points, confined to modeling the positions of the peaks in the double slit inter- 
ference pattern. Two cases need to be distinguished. If the source contains a 
pseudo-random distribution of particle velocities which happens to include cases 
with v12, the coherence time is Tcoh = NTd12At. On the other hand, the source 
may be independently specified using some other part of the theory (eg. the de- 
cay of an excited atom). We must insure that  our model properly includes both 
possibilities. Another complication is that  we must distinguish in our modeling 
the fact that  there are two kinds of space and time periodicities corresponding 
to the group velocity (v12) of the "wave packet" and the "phase velocity" de- 
fined by ?Yl2?dph : C 2 .  A third is that  the interference pat tern wave length is 
given by h/p(f112) and must be computed using the proper relativistic formula 
given above relating fl to 4-velocity u. Spelling all this out will take a textbook 
- -  which is being written (Noyes (in preparation)). We take a few steps in the 
next sub-section toward specifying what we mean by finite and discrete Lorentz 
invariance in a theory which takes measurement accuracy seriously. 

4.6 Initial Steps  Toward Construct ing  Finite  and Discrete  lq-1 
Lorentz Boos t s  in "Space-Time" 

Keeping in mind the fact tha t  we must eventually return to an examination of 
the experimental context in which our "origin" of coordinates is specified, we 
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now develop "Lorentz boosts" between two velocity states ~i(Ni, n~), ~ / ( N / ,  n / )  
under the assumption that  the corresponding event coordinates are 

t i=Ni ,  x~=~i t i=ni;  t / = N / ,  x i = f ~ / t / = n f  (38) 

for a boost velocity f~(N, n) -- n/N. The obvious constraint we must satisfy is 
tha t  

+ ~ (39) 

The less obvious constraint is, that  is the minimum number of periods of each of 
the three velocities must allow us to insure that  all three events are "physical" 
when referred (as we implicitly have) to a fourth "reference event" at (0, 0) and 
tha t  the counter firings which allow the velocity to be measured lie within the 
event horizon. This we start  to work out here and will complete elsewhere. 

By assigning (integer) coordinates (x l , t l )  and (x2,t2) in a theory with a 
limiting velocity c, we have implicitly assumed that  the clocks which record t l  
and t2 at these two distinct locations have been synchronized using the Einstein 
convention. We now include the possibility of this synchronization explicitly in 
our construction. We let x2 - x l  = 2X > 0, t2 - t l  -- 2T > 2X > 0 and 
(formally) fix the space time coordinates of firings 1 and 2 at ( - X , - T )  and 
(X, T) respectively. Then the two counter firing bracket our (formal) "origin" 
(0, 0). To synchronize the clocks, we place a "mirror" at some position ( -Tx )  
with Tx > T > 0, and require that  a light signal sent from ( - X , - T )  to this 
mirror and reflected back along the same line will arrive at (+X,  +T) .  Then 
the time it takes for the light signal launched at the time of the first firing to 
reach the mirror is Tx - T, while the time interval from the reflection to the 
arrival in coincidence with the second counter firing is Tx + T. This insures 
tha t  the time interval between the two firings is, in fact 2T, consistent with our 
formal assignment of coordinates, independent of where along the line we place 
our reference "mirror" ( -Tx)  and consistent with the Einstein synchronization 
convention. Note that  the velocity measured by the two sequential counter firings 
is jg(T, X)  : X/T.  

In a continuum, classical theory of space-time measurement, it is possible to 
specify both position and velocity simultaneously at any instant of time t. In our 
context, which we have constructed by paying careful attention to the constraints 
imposed by finite velocity resolution, this is no longer possible. If we use the times 
of the two counter firings and their previously measured positions (and clock 
calibrations) to measure the velocity, all we can say from the point of view of 
measurement is that  the particle position and time (x, t) during the measurement 
of velocity is subject to the constraints - X  < x < + X ,  - T ,  < T < + T  (with 
both x and t integer). If we are willing to assume that  a third counter placed on 
the line between the first two does not interfere with the velocity measurement - -  
an assumption that  can only be checked "statistically" by repeated measurement 
- -  we can reduce this uncertainty considerably and check the assumption of 
"constant velocity" between the counters to limited accuracy. Place this counter 
at a position x which satisfies the position constraint, and assume it fires at t ime 
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t, and hence with the time intervals T -  = T + t ,  T + = T - t .  We have now made 
two, rather than one, velocity measurements which give the values 

8 - -X + x  8+ _=X-z (40) 
T + t  ' T - t  

Of course, if we can place our counter precisely at x = 0 and it always fires at 
t = 0, we will confirm the classical, continuum model. But  this assumption would 
violate our initial hypothesis of finite velocity resolution. Clearly the detailed 
exploration of what  we mean by finite and discrete Lorentz invariance would take 
us too far afield. We intend to develop it elsewhere (see Noyes (in preparation)).  

4.7 C o n c l u s i o n s  A b o u t  D e c o h e r e n c e  in a D i s c r e t e  T h e o r y  

We hope that  the discussion in this section at least gives the flavor of how we 
intend to develop a complete relativistic quantum mechanics of single particle 
phenomena which will give precision to question of where the limitations on 
the Feynman-Dyson-Tanimura- Kauffman derivation of the classical relativistic 
fields will arise due to quantum effects. In a more conventional vein, we could say 
that  we can only apply classical considerations to systems where the "collapse of 
the wave function" has changed quantum states from a coherent superposition to 
a mixture. Lacking our own theory for this, and noting that  there is considerable 
controversy in the literature both about the "correspondence limit" of relativistic 
quantum mechanics and whether there is such a thing as "quantum chaos", we 
again conclude that  whatever the outcome of research pursued on current lines, it 
is bound to remove the question of the physical meaning of "deterministic chaos" 
still farther away from the practice of physics when examined operationally at 
the level of fundamental theory. 

In the next section we describe a promising theory which does have corre- 
spondence limits in non-relativistic quantum mechanics, relativistic (classical) 
particle physics, and (if the derivation of classical relativistic field theory given 
in Section 3 is accepted) in the classical relativistic field theories of electromag- 
netism and gravitation. 

5 Bit-String Physics: 
A Novel Relativistic Quantum Theory 

[Since we have recently completed (in Noyes (1994c) a fairly complete and sys- 
tematic presentation of our "theory of everything" we content ourselves here 
with quoting the introduction to that  paper and the essential results, and refer 
the reader to the longer publication, and references therein, for details.] 

"Although currently accepted relativistic quantum mechanical theories incor- 
porate many discrete phenomena, they are embedded in an underlying space- 
time continuum in a way which guarantees the creation of infinities. Despite 
many phenomenological successes, they have as yet failed to achieve a consensus 
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theory of 'quantum gravity'. We believe that  these two difficulties are connected, 
and that  both can be circumvented by basing fundamental physical theory di- 
rectly on the computer tools of bit-strings and information theory based on 
bit-strings. This has the further advantage that  we can base our model for space 
and time on finite intervals between events (eg. counter firings) measured to 
finite (and fixed in any particular context) accuracy. This operational method- 
ology then allows us to avoid such metaphysical questions as whether the 'real 
world' is discrete or continuous (see Noyes (in press)), or whether the 'act of 
observation' does or does not require 'consciousness' " (Noyes (1994b)). 

"By a ' theory of everything' (TOE), we mean a systematic representation of 
the numerical results obtained in high energy particle physics experiments and 
by observational cosmology. The representation we use employs a growing but  
always finite assemblage of bit-strings of finite length constructed by a simple 
algorithm called program universe explained" (Noyes (1994c)). 

"More conventional ToE's are based on the mathematical continuum and 
the structures of second quantized relativistic field theories (QFT). They  ignore 
the flaws of QFT (infinite answers to physically sensible questions, unobservable 
'gauge potentials', and no well defined correspondence limit in either classical 
relativistic field theory, non-relativistic quantum mechanics or nuclear physics). 
The  most ambitious of these theories assume that  non-Abelian gauge theories in 
the form of 'string theory' succeed in explaining "quantum gravity". Compari- 
son  with practical metrology is made by identifying h, c and Ggewton in their 
theoretical structures. It is then an act of faith that  everything else is calcu- 
lable. Less ambitious ToE's (eg. GUT's  = grand unified theories) fix the third 
parameter  as a universal coupling constant at an energy of about a thousandth 
of the Planck mass-energy and then 'run' it down in three different ways to en- 
ergies a factor of 1015 smaller where these three distinct values are identified as 
the measurable fine structure constant (a = e2/hc), weak interaction constant 
(GFermi) and strong coupling constant as; because the strong (QCD) coupling 
'constant '  is supposed to diverge at zero energy, models must include its energy 
dependence over a finite energy range. In practice, such theories contain a fairly 
large number of phenomenological parameters." 

"In contrast, we employ a structure in which we need only identify h, c and 
mp (the proton mass) in order to make contact with standard MLT metrology, 
using the kilogram, meter and second as arbitrary but  fixed dimensional units. 
a, GFerrni , GNewton and a number of other well measured parameters can be 
computed and the quality of the fit to experiment evaluated in a less problematic 
way. While these comparisons are very encouraging, with accuracies ranging from 
four to seven significant figures, they are not perfect. So far as we can see the 
discrepancies could arise from the concatenation of effects we know we have so 
far not included in the calculations, but we are prepared to encounter 'failure' 
as we extend the calculations. However, the quality of the results achieved to 
date lead us to expect that  such 'failure' would point to where to look for 'new 
physics' in our sense. Since we leave no place for 'adjustable parameters ' ,  such 
a crisis should be more clear cut for us than in a conventional ToE. We do not 
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believe that it is possible to make a 'final theory', and might even welcome a 
failure serious enough to allow us to abandon this whole approach and turn to 
more conventional activities." 

"We start from a universe of bit-strings of the same length which grow in 
length by a random bit, randomly chosen for each string whenever XOR between 
two strings gives the null string; else the resulting non-null string is adjoined to 
the universe. Then recurse. Because of closure under XOR (Amson (1979)), 
and a mapping we present (Noyes (1994e)) of the quantum numbers of the 3- 
generation standard model of quarks and leptons onto the first 16 bits in these 
strings, we can model discrete quantum number conservation (lepton number, 
baryon number,charge, weak isospin and color) using a bit-string equivalent of 
4-leg Feynman diagrams. Quarks and color are necessarily confined. All known 
elementary fermions and bosons are generated, and no unknown particles are 
predicted. The scheme implies reasonably accurate coupling constants and mass 
ratios, calculated assuming equal prior probabilities in the absence of further 
information. The combinatorics and the standard statistical method of assigning 
equal weights to each possibility provide an alternative interpretation of results 
previously obtained from the combinatorial hierarchy (Bastin (1966); Noyes and 
McGoveran (1989); McGoveran and Noyes (1991)), including the closure of these 
bit-string labels at length 256, and the prediction of the Newtonian gravitational 
constant. Baryon and lepton number conservation then gravitationally stabilizes 
the lightest charged (free) baryon (the proton) and lepton (the electron) as 
rotating black holes of spin 1/2 and unit charge." 

"The growing portion of the bit-strings beyond the quantum number conserv- 
ing labels can be interpreted as describing an expanding 3-space universe with 
a universal (cosmological) time parameter. Within this universe pairwise colli- 
sions produce products conserving relativistic 3-momentum (and, when on mass 
shell, energy) in terms of quantized Mandelstam parameters and masses. The 
baryon and lepton number, ratio of baryons to photons, fireball time, and ratio 
of dark to baryonic matter predicted by this cosmological model are in rough 
accord with observation. The model contains the free space Maxwell equations 
for electromagnetism and the free space Einstein equations for gravitation as 
appropriate macroscopic approximations for computing the motion of a single 
test particle." 
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Coupl ing Cons tan t  

G - 1  nc 

GFm2p/hc 
8in2OWeak 
o l - l ( m e )  

2 
GTrNN 

C O U P L I N G  C O N S T A N T S  

Calcu la ted  Observed 

[2127 + 136] x [1 - 1 3.-':~o] = 1.693 3 1 . . .  x 103s [1.69358(21) x 1038] 

[2562v/2] -1 • [1 - 3.--171 = 1.02 7 5 8 . . . x  10 -5 [1.02 682(2) x 10 -5] 
0.2511 - ~.~.~712 = 0 .2267 . . .  [0.2259(46)] 

137 • [1 - ~ ] - 1  = 137.0359 674 . . .  [137.0359 895(61)] 

[(2M__~ )2 _ 1]�89 = [195]�89 = 13.96.. [13,3(3), > 13.97] 

MASS RATIOS 

Mass rat io  Ca lcu la ted  Observed 

rap~me 137~r = 1836.15 1497 . . .  i1836.15 2701(37)] 

m~/m~ 27511-  : [273.12 67(4)] ~ ]  = 273.12 9 2 . . .  
m,o/me 27411 3 _ . [264.1 373(6)] - ~ ] - -  264.2 143 ..  
mt,/mr 3 - 7 -  10[1 - a.--VY6.1o]3 = 207 [206.768 26(13)] 

C O S M O L O G I C A L  P A R A M E T E R S  

Pa rame te r  Calcu la ted  Observed 

NB/N 7 2 : 6 4  = 2.328 .... • 10 -1~ ~ 2 x 10 -1~ 
Mdark/Mvis ~ 12.7 Mdark :> 10M~is 

N u  - N~ (2127 + 136) 2 = 2.89... • 107s compatible 

4•176 .05 < PlPc,-~ < 4 p/ Pcrit Mc~i ~ 

T a b l e  I. C o u p l i n g  c o n s t a n t s  a n d  m a s s  r a t i o s  p r e d i c t e d  by  t h e  f in i te  
a n d  d i s c r e t e  un i f i ca t ion  of  q u a n t u m  m e c h a n i c s  a n d  re l a t iv i ty .  E m p i r i c a l  
I n p u t :  c, h a n d  mv as u n d e r s t o o d  in t h e  " R e v i e w  of  P a r t i c l e  P r o p e r t i e s " ,  

P a r t i c l e  D a t a  G r o u p ,  Physics Letters, B 239 ,  12 A p r i l  1990. 
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[This paper ends with the following caveat] 
"We warn the reader that  detailed and rigorous mathematical proof of some 

of the statements made above is still missing. We wish to thank David McGov- 
eran for pointing out to us that  this caveat is particularly relevant for the use we 
make of the corrections he derived in the context of the combinatorial hierarchy 
construction. For him, constructing our bit-strings using program universe and 
bringing in the identification of the labels from 'outside' - -  i.e. from known facts 
about quantum number conservation in particle physics - -  amounts to creating 
a different theory. While we have confidence that  mixing up the two approaches 
in this way can, eventually, be justified in a compelling way, it may well turn 
out that  our confidence in this outcome is overly optimistic. 

"To summarize, by using a simple algorithm and detailed physical interpreta- 
tion, we believe we have constructed a self-organizing universe which bears a close 
resemblance to the one in which physicists think we live. It is not 'self-generating' 

- -  unless one grants that  the two postulates with which Parker-Rhodes begins 
his unpublished book on the 'inevitable universe', namely: 'Something exists! ' 
and ' This statement conveys no information' suffice to explain why our universe 
started up." 

6 P h i l o s o p h i c a l  I m p l i c a t i o n s  

We now return to the question of how this work in foundations of particle physics 
and physical cosmology relates to the question determinism versus indetermin- 
ism in physics. Since the theory we present is, to put it mildly, controversial, 
it is obvious is that  any conclusions must be tentative. Nevertheless, we believe 
that  the fact that  a "theory of everything" (i.e. of particle physics and physi- 
cal cosmology) using only finite and discrete observations and sticking to this 
methodology is at least possible is relevant to the issue of determinism versus 
indeterminism. Clearly the theory is computational, and in that  sense "determin- 
istic". Yet, because it rigorously excludes both the continuum and mathematical 
induction, it provides a physical theory in which "deterministic chaos" simply 
cannot arise. 

Of course the operational methodology on which our approach to physics is 
based cannot be argued for to the exclusion of more conventional approaches. 
But even those approaches provide three reasons why "deterministic chaos" 
should not be considered a fundamental theory and hence relevant to meta- 
physical conclusions. The first is that  the classical theories of electromagnetism 
and gravitation can be derived by accepting a lowest, finite and fixed bound on 
the accuracy to which space and time intervals can be measured. Hence assum- 
ing boundary conditions known to an accuracy needed to reach "deterministic 
chaos" is logically inconsistent with using these equations to establish it. The 
second is that  the non-relativistic uncertainty principle removes "deterministic 
chaos" from consideration as a physical theory in any case. The third is tha t  
once we take into account the observed phenomenon of electron-positron pair 
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creation, any theory which tries to specify distances to better than h/2mec is 
ipso facto operationally meaningless. 

Patrick Suppes has argued on quite general grounds in his paper entitled 
"The Transcendental Character of Determinism" Suppes (1993) that  modern 
work on what are called "deterministic systems" has shown that "Deterministic 
metaphysicians can comfortably hold to their view knowing that  they cannot be 
empirically refuted, but so can indeterministic ones as well." He then proposes 
a fundamental reinterpretation of Kant 's  Third Antinomy, claiming that  "Both 
Thesis and Antithesis can be supported empirically, not just the Antithesis." We 
offer this paper as support to his claim, using a very different body of physical 
theory and experimentation as our context. 
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Noyes :  There seems to be some confusion between the fact that  in my theory I 
have finite space-time intervals between space-time events, and the fact tha t  in 
the conventional continuum theory of strong interactions (i.e. QCD or quantum 
chromodynamics), that  theory is approximated by introducing a rigid space-time 
lattice with a fixed interval between the lattice points. This arbitrary cutoff pro- 
cedure is needed in QCD because the strong coupling constant in tha t  theory 
is infinite at zero energy, producing confined quarks and what is called infrared 
slavery. So far as I know, even using the most sophisticated super-computers the 
lattice calculations have yet to produce quantitative results of sufficient quality to 
compare with experiment. In contrast, my theory gives a good non-perturbative 
result for the pion-nucleon coupling constant - -  one of the basic strong interac- 
tion coupling constants that  can be measured experimentally - -  in a very simple 
calculation. Eventually I should be able to calculate low energy quark phenom- 
ena in u similar way by developing a relativistic Faddeev-Yakubovsky type of 
quantum scattering theory. But that  technical development lies in the future. It  
is also superior to the conventional lattice calculations in that  quantized angular 
momentum does not have to be approximated. Eventually, this should lead to 
technical advantages over the conventional continuum theories. But tha t  is only 
a hope so far. 
W e i n g a r t n e r :  You had no lattice on the basis you said. But do you have such 
an integer geometry? 
Noyes :  I have an integer geometry, but it does not refer to the lattice used for 
QCD calculations, or to any rigid lattice. 
W e i n g a r t n e r :  Yes, right. But does this give you enough possibilities? I mean 
these selected proportions which you can get out of this integer geometry - does 
it give you enough basis to do all this physics? 
Noyes :  I obtain standard angular momentum quantization. So my t reatment  is 
equivalent to the standard quantum mechanical t reatment of rotations. The  basic 
difference is tha t  my masses are quantized in units Am which are in the same 
ratio to the proton mass as the proton mass is to the Planck m a s s  ( M p l a n c k  : 

[hc/G] �89 = 1.3 • 1019m~o~o~). Until one can predict and measure dimensionless 
ratios to better  than a part in 10 TM, there will be no direct way to distinguish 
my theory from a continuum relativistic quantum mechanics. At tha t  level of 
accuracy there would be genuine differences and one could ask whether there 
was a lattice at that  scale which has absolute significance in contrast  to the 
relativistic scheme I have presented here. 
W u n d e r l i n :  How many free parameters are in your theory and of what kind 
are these? 
Noyes :  There are no free parameters in my theory. Any physical theory must 
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make contact with the meter, kilogram and second in order to make experimental 
predictions which can be tested. For this purpose I identify the parameters called 
h, c, and mp in my theory with the values given in meters, kilograms and seconds 
in the Particle Data Book. But beyond those three empirical numbers I have no 
parameters in any sense. 
W u n d e r l i n :  Perhaps it lies in the standard theory. If I remember correctly, there 
were 19 such parameters in the standard theory. 
Noyes :  I agree that  in the standard theory, there are something like 19 adjustable 
parameters.  In principle, all of these parameters are calculable in my theory, but  
so far I have only calculated those given in the table in my paper. I have not 
calculated the QCD coupling constant (which is not directly observable), but  I 
have calculated the pion-nucleon coupling constant which is related to it. I have 
not calculated the Kobayashi-Maskawa mixing parameters. That  will be a real 
test of my theory. In order to do so, as already noted, I will have to develop a 
low energy QCD scattering theory. And that  hasn't  been done. But in principle 
every observable parameter is computable. The calculation of the pion-nucleon 
coupling constant as 13.96 in good agreement with experiment shows that  in 
some sense I am doing low energy QCD right. What  I have to do next, now 
that  I have a good value for the muon mass (207 electron masses) is to calculate 
the kaon and hyperon masses, and then go on to the charmed, bot tom and top 
systems. None of these values are adjustable parameters for me. And that  is why 
this theory really puts me in a box. If I come up with the wrong values I have 
no place to hide. This theory either stands or falls as a piece. 
W e i n g a r t n e r :  Is there a smallest distance between elementary particle collision 
for instance? 
Noyes :  Well, there certainly will be. If you go down to the Planck length 
(h/MplanckC .~ 10 -33 cm), then you would see the quantization of mass dis- 
cussed above. In that  sense the shortest distance is the Planck length. But  
long before you hit the Planck length, you are producing enormous numbers 
of particle-antiparticle pairs. So to talk about length in a classical sense is very 
misleading. What  you are really looking at is the structure in energy-momentum 
space, which is only theoretically connected to structure in space-time. What  you 
are exploring is the probability of producing all the different kinds of particles of 
s tandard high energy physics. To call that  a measurement of short distance is, 
I think, the wrong way to talk about it. I know high energy physicists in public 
pronouncements often talk about testing quantum field theory at distances of 
10 -16 cm. As far as I am concerned they are testing a model which has tha t  
dimensional parameter in it, not physical space. 
W e i n g a r t n e r :  And what about lowest energy, is there such a border? 
Noyes :  The lowest energy would be, again, a proton's mass-energy divided by 
1.3 x 1019, that  is A m c  2 with the same A m  defined above as the unit in which 
mass is quantized. This cannot be divided further, just as the Planck constant h 
is the smallest change in angular momentum which can be measured. Of course, 
if new experimental phenomena show up on our way to the Planck energy, the 
theory might have to change. One thing which would be relevant is the neutrino 
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masses indicated in the solar neutrino experiments, and in a recent Los Alamos 
experiment. If my theory cannot predict these masses correctly, this would kill 
it right there. Mine is not an a priori theory. It definitely could be refuted by 
experiment. 
Ch i r ikov :  One question: You have two parameters or whatever in your theory? 
Noyes :  I have no parameters. Any theory must make contact with the meter, 
kilogram and second by some means. For that  purpose I use c, h and rap. In 
other words, my unit of length is h/mpC, my unit of time is h/rnpc 2 and my unit 
of mass is m v. 
Chi r ikov :  No, the units do not matter,  of course. There are three fundamental 
constants in physics. Does it mean you can calculate them? 
Noyes :  Yes, I calculate them. 
Ch i r ikov :  All of them? 
Noyes :  Yes, in principle (other than c, h and rnv, as already explained). I have, 
for instance, calculated Newton's constant from G-lhc/rng = 1.693 31 x 103s as 
compared to the empirical value 1.693 58(21) x 1038. 
Ch i r ikov :  And what about Planck's constant? 
Noyes :  No, I am taking h, c and mp from experiments consistent with the way 
these constants occur in my theory. But then I calculate Newton's constant G. 
Chi r ikov :  O.K. 
Noyes :  For example (see table in paper), I can calculate the Fermi constant, the 
weak angle, the fine structure constant, and the pion-nucleon coupling constant. 
Ch i r ikov :  O.K. You begin with three parameters, c, h and rap. I would say that  
c and h are really fundamental. Proton mass is certainly not, because the proton 
has a very complicated structure. 
Noyes :  Because I can calculate the proton-electron mass ratio (see table in 
paper) it does not matter  whether I use the proton mass or the electron mass. 
Ch i r ikov :  Yes, O.K. 
Noyes :  So, if you prefer, I could quote my results in terms of the electron mass 
rather than the proton mass. But then I would have to justify my calculation 
(originally due to Parker-Rhodes) of the mass ratio. Actually, the mass unit 
which occurs in the calculation of both the Fermi constant and Newton's constant 
is the proton mass. 
Ch i r ikov :  This is just what seems strange to me. 
Noyes :  I know that  a lot of people think of the proton as a complicated object, 
but  for me it is simply the lightest, charged baryon. Since my theory conserves 
baryon number, perhaps this makes it less strange. 
Ch i r ikov :  So, you exclude the violation of baryon-number conservation? 
Noyes :  I exclude the violation of baryon number. 
Ch i r ikov :  In your theory it does not exist? 
Noyes :  As is explained in more detail elsewhere [H.P.Noyes, "Comment on 'Sta- 
tistical Mechanical Origin of the Entropy of a Rotating Charged Black Hole" ', 
SLAC-PUB-5693 (Nov. 1991)], if one starts from 2127 + 136 ~ 1.7 x 1038 proton- 
antiproton pairs plus a proton inside a sphere of radius h/mpC, the energy will 
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rapidly be dissipated by proton-antiproton annihilations (our version of Hawk- 
ing radiation) leaving behind a charged rotating black hole (see W.H. Zurek and 
K.S. Thorne, Phys. Rev. Letters 54, 2171 (1985), for the classical calculation) 
which is indistinguishable from a proton, and stable provided baryon number is 
conserved. So from my point of view, the proton is an elementary particle. If you 
wish to observe the quark degrees of freedom, you must supply the energy and 
momentum from outside the system, in the same way that you must supply the 
energy to a hydrogen atom in the ground state in order to see the levels above 
the ground state and below ionization threshold (Franck-Hertz experiment). The 
basic difference is that the quarks remain confined, corresponding to an infinite 
ionization threshold. 
Chirikov: Yes, but your theory is inconsistent with the grand unification theory. 
Noyes: It is inconsistent with unstable protons. Since grand unification theories 
predict that protons are unstable, and proton decay is not observed, it is the 
grand unification theories that are in disagreement with experience. My theory 
is not. 
Chirikov: Not yet observed, perhaps... 
Noyes: The original grand unification theories predicted that the proton lifetime 
should be about 1024 years. When the experimental lower limit was pushed above 
that value, they found ingenious ways to raise their predictions. By Herculean 
efforts, the experimentalists have now pushed the experimental lower limit up to 
1035 years. After considerable work, the grand unification theorists have again 
caught up, but the last I heard was that they could not raise the limit any further 
than a decade or at most two. In the light of this history, I would claim that the 
"prediction" of proton instability is not worth much. In contrast, my theory in 
its current form would be disproved by the observation of proton decay. 
Miller: I would not pretend that I understood everything that you said, but I 
should like to ask you a nasty question nonetheless. Suppose that the next cal- 
culations that you do conflict with experiments - that is, your theory is refuted. 
Which of the postulates of your theory would you give up? 
Noyes: Then I would have to think pretty hard about whether it is possible 
to save the theory by some basic modification, or whether I should abandon 
the whole approach. Depending on where such a failure occurs, it could be an 
indication of some basic structure that has been omitted. Of course this theory, 
like any theory, will eventually be disproved. That is how we make progress, by 
finding out why the theory fails to explain phenomena. I would have to take my 
clues from where the failures occur. 
Miller: May I force my question. I did not see, apart from your general remarks 
about units, what the detailed postulates are. 
Noyes: Suppose, for instance, that Tony Leggett is right in his conjecture that 
the transition from quantum to classical mechanics occurs for systems that have 
approximately 1015 atoms. This would be a new phenomenon, and would define 
a parameter that does not occur either in my theory or in conventional theories. 
This is what Leggett is looking for in the quantum mechanical barrier penetration 
of one flux quantum between two SQUIDs. If he succeeds both conventional 
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theories and mine would have to understand tha t  parameter.  
Mi l le r :  Yes, but tha t  would be a refutation, wouldn' t  it? 
Noyes :  Rather, tha t  would mean that  the theory has to be extended. 
Mi l le r :  Tha t ' s  most theories' problem. 
Noyes :  True, but that  would not be the same as a refutation. Wha t  I would count 
as a serious difficulty with my theory would be if I were forced to predict the 
wrong mass for the K-mesons. If tha t  does not come out approximately correct, 
I would know tha t  there is something fundamentally wrong with the scheme and 
I would have to think very hard. So tha t ' s  one of the next calculations I want 
to make. I have already take the first step into the second generation of quarks 
and leptons by calculating the muon mass as 207 electron masses, which agrees 
with experiment to within one electron mass (see table). Since the charged kaon 
is par t ly  a bound state  of a muon and a muon neutrino, this means I should 
be able to calculate this second generation mass. But  I also have generation 
number in my scheme, so I should be able get the J/r ("gipsy") particle and 
the D-mesons as well. I can already see why the first generation - -  up and 
down - -  quark masses should be only a few electron volts, but those cannot be 
measured directly. Tha t  is why I prefer to talk about  the meson masses which are 
measurable. The trouble is tha t  I have yet to find a high energy particle physicist 
to collaborate with on what  most  of them consider a unpromising theory. And 
I wanted to get the foundational stuff right first. The kaon masses are not a 
problem in principle. But  I have to work out my relativistic particle scattering 
theory in more detail before I will t rust  the answer. After I have articulated the 
scattering theory and can use it to calculate the kaon masses, an answer tha t  
differs from experiment by more than a few electron masses would pose a very 
serious problem for me. 
W e i n g a r t n e r :  Does your theory say anything about  the interpretation of the 
Bell inequalities and to these problems of locality? 
Noyes :  As to the problem of locality, I know how to use a bit-string model to 
send information that  not only synchronizes distant clocks but suffices to set 
up local directions at distant locations which have a global and not just a local 
meaning. I also know how to model the detection statistics of the polarimeters 
used in the Aspect experiment. If I use the same key word, sometimes called a 
"seed", in the local pseudo-random number  generators which generate the detec- 
tor statistics at space-like separated locations, I will produce not only the correct 
local statistics, but an absolute correlation between the two distant "detections". 
I t  seems to me tha t  I have in hand all the ingredients needed to construct a com- 
puter  model of the Aspect experiment tha t  could actually be built and tested. 
Pat  Suppes, and my colleague Tom Etter,  are very sceptical. I t  is true tha t  each 
a t t empt  of mine to complete the coding for the model has turned out to be 
flawed. But I am still optimistic. If  I succeed, Henry Stapp agrees tha t  I will 
have found out something new about  quantum mechanics. But so far, I cannot 
make tha t  claim. 
W e i n g a r t n e r :  There is a new interpretation of Aspect 's  experiments by Kwiat,  
Steinberg and Chiao (Physical Review 47, R 2472) who did also new experi- 
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ments. One type of experiments were proposed by J.D. Franson: Two photons, 
simultaneously emitted by a parametric converter (an optical non-linear cristall) 
pass (each of them) two separated interferometers where they might choose a 
short or a long route, the short way leading to a detector. The experiment shows 
that the photons when leaving the instrument "seem to know" immediately 
which way (the longer or the shorter) the other has taken. Both results of mea- 
surement depend non-locally upon each other. Another experiment was that of 
tunnelling photons compared to photons without a barrier. It led to the sur- 
prising result that those which went through the tunnel were quicker such that 
one had to assume superluminarity in the tunnel. This appearing non-locality 
(super luminarity) was interpreted not as really increasing the velocity (there is 
no superluminar signal) but as a shift (towards the front) of the maximum of 
the amplitude of the wave packet by running through the "tunnel". 
Noyes: O.K. I will study that in detail. Thank you for giving me the reference. 
That will be worth thinking about. 
B a t t e r m a n :  What kind of equation of evolution do you get for describing, you 
know, macroscopic context? 
Noyes: There are two types of time evolution in my model. The first corresponds, 
roughly, to what would be called cosmological time in a conventional model. For 
me this is the program which generates an evolving universe of bit-strings. At 
any stage there are a finite number of strings of the same, finite length. Two are 
picked at random and compared using XOR. If they are the same a random bit, 
randomly chosen for each string, is adjoined to each string, increasing the bit- 
length of all strings by one. If they are different the string produced by XOR will 
differ from both. It is adjoined to the bit-string universe, increasing the number 
of strings by one. 
Miller: You say that you choose two at random, and that if you get something 
that is different from those two then you get a new one. That does not follow. 
Noyes: Why not? 
Miller: Perhaps it was already there. 
Noyes: If it is the same as a string that was produced earlier, it will be adjoined 
to the memory in a new location. In that sense it will be a new string. The action 
is only IocaIly deterministic. I have no guarantee that the strings produced are 
globally unique. In fact, for the length of the strings to increase, I must have 
two strings in different locations which are otherwise identical, and pick them 
for the XOR comparison. For a more familiar type of time evolution, consider 
first two strings which combine by XOR to produce a third which could also be 
produced by two different strings. This can be interpreted as a four leg Feynman 
diagram, with a single intermediate particle. It can be shown that the standard 
energy-momentum-angular momentum conservation laws hold in the finite and 
discrete (mass-quantized) form appropriate to my theory. Further, the coupling 
constants (like the fine structure constant and the Fermi constant) are given by 
the statistics with which the strings are produced. Then, comparison with exper- 
iment can be madein the usual way by computing cross sections from S-matrix 
amplitudes. To go beyond this single particle exchange approximation, these 
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amplitudes can be used as driving terms in relativistic Faddeev-Yakubovsky in- 
tegral equations. Then the solution of these equations, which is guaranteed to 
be unitary, gives the appropriate  t ime evolution for strongly interacting three 
and four body systems. 
B a t t e r m a n :  Suppose I want to describe the behavior of a fluid. W h a t  kind of 
limiting relations presumably do you want for the equations? 
Noyes :  To go to the Navier-Stokes equations from relativistic quantum particle 
theory would be a Herculean task, which would require classical or semi-classical 
approximations tha t  might not be under control. What  I do claim to have done 
in my paper  is to show how to go from measurement accuracy to the Maxwell 
equations for electrodynamics. Perhaps the optimism this engenders about  more 
complicated classical systems is not justified. 
B a t t e r m a n :  But  if you want to use it you said something like chaos tha t  appears  
in the Stokes-equation. 
N o y e s :  Then I would have to ask for more detailed information as to what  
accuracy I need in specifying the boundary conditions for chaotic results to 
appear  in the solution. If tha t  accuracy is not obtainable, my position would be 
tha t  we cannot say that  the equations predict chaos. 
Mi l le r :  Suppose tha t  you just  have a random mechanism in a black box tha t  
calculates the logistic function and then produces a sequence of O's and l ' s  tha t  
we all think of as deterministic chaos. 
Noyes :  O.K. Wha t  is the physical system you are modeling? 
Mi l le r :  I 'm  not an engineer. I do not have to design anything tha t  calculates 
this. I t  is just  a piece of metal  inside a box that  is producing the calculation. 
Noyes :  This looks like a computer  model to me. What  is it modeling? 
Mi l le r :  I t  is not modeling a system. I t  is a physical system. Could you accept 
tha t  coin tossing is a physical system. Spectral lines or the light going through 
a halfsilvered mirror or something like that.  
Noyes :  If  it is not modeling anything, you are talking about a macroscopic sys- 
tem. Then I need to know the detailed specification of the system, and the accu- 
racy to which the boundary conditions are known, before I can say whether  pre- 
dicting tha t  the behavior of tha t  th e system will exhibit "deterministic" makes 
sense in the first place. 
Mi l le r :  I didn' t  understand your remark tha t  deterministic chaos is just  an 
artifact.  
Noyes :  
solution 

Deterministic chaos is a mathematical  s ta tement  about  the numerical 
of certain non-linear equations. To make this result into a prediction 

about  a physical system which the mathematics  is supposed to model, it is nec- 
essary to investigate (a) whether the calculation is vitiated by round-off error, 
and (b) whether the initial boundary conditions can be measured to sufficient 
accuracy for the chaotic si tuation to develop. If this accuracy requires you to 
measure positions to bet ter  than  half an electron compton wavelength, I assert 
tha t  your mathemat ics  which predicts deterministic chaos cannot be used to cor- 
rectly model tha t  physical system in that  context. Then, for me as an empiricist, 
deterministic chaos becomes a vacuous concept in that  context. 
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Mil ler :  I did not have a model. All I have is a physical process that  is happening 
in the world. 
Noyes :  You are describing the world mathematically. That ,  from my point of 
view, amounts to the mathematical modeling of a physical system. I claim that  
it is then legitimate for me to ask whether that  model is appropriate or not. 
If the calculation is to apply to the world, it is necessary to explain how the 
mathematical  model is connected to the world you observe. As a physicist, I have 
to ask that .  I always must ask the question what is the connection between the 
mathematical  model and the physical system being modeled. Until you answer 
that  question I cannot say whether your model is appropriate or inappropriate. 
Certainly there are situations in which models involving deterministic chaos are 
appropriate. All I am saying is that  then they are approximations from the 
point of view of the underlying relativistic quantum mechanics. Consequently 
such models cannot be brought to bear on the question of whether the physical 
system being modeled is deterministic or not. I don't  understand where the 
confusion is arising. 
Supp e s :  I think with your system you also made this remark about deterministic 
chaos. Those are things that  don' t  fit together. 
Noyes :  No, the connection between my particle physics and classical systems is 
not very tight. 
Suppes :  In your theory you cannot talk about solutions of the Navier-Stokes 
equation. 
Noyes :  That  is true at present. But my current success in arriving at the clas- 
sical Maxwell equations for electromagnetism as the correspondence limit of my 
theory allows me to speculate that  this will ultimately be possible for the rest 
of classical physics. This will take a lot of work. Currently I can talk about two 
particle systems, and with more difficulty, three and four particle systems. To 
go beyond the relativistic Faddeev-Yakubovsky finite particle number equations 
will be tough. 
Ch i r ikov :  I would put this question another way. Is the whole system you con- 
struct, your whole theory, describing everything, is it a dynamical theory or a 
statistical one? 
Noyes :  It  is a statistical theory because the bit-strings are (if you like) the 
underlying ontological elements. They  are generated by a random process which 
will return a zero or a one with equal probability. My model is quite definite on 
that  score. Whether  the universe is really like that  is another question. 
Ch i r ikov :  In this theory you must have some chaos from the beginning. 
Noyes :  I am assuming that  all particles in the universe can be described by 
bit-strings. 
Ch i r ikov :  Is there a finite number of particles? 
Noyes :  The number of protons, or more precisely the number of baryons minus 
the number of anti-baryons is about 2.9 • 1076 (see table). This is in approximate 
agreement with observation. My cosmology predicts this finite number. This 
is the number of protons you end up with a few hundred million years after 
the start  of the process that  generates space, time and particles. This is also 



184 Batterman, Chirikov, Miller, Noyes, Suppes, Weingaxtner, Wunderlin 

approximately the time when the universe changes from being optically thick to 
optically thin, sometimes called "fireball time". Then the radiation breaks away 
from the matter  and goes on expanding for fifteen billion years, providing the 
currently observed 2.7~ cosmic background radiation. 
Ch i r ikov :  This is the number of protons? 
Noyes :  Approximately, yes. 
Ch i r ikov :  But what is the number of all particles? 
Noyes :  To a good approximation, 75% of the matter  is hydrogen and 25% 
helium. There is one electron per hydrogen atom, two protons, two neutrons 
and two electrons per helium atom, and a small percentage of other stuff. So, to 
about  a factor of two, the number of protons is the same as the baryon number, 
is the same as the number of particles. 
Ch i r ikov :  But at the beginning there were no protons at all. 
Noyes :  Tha t  is true of standard inflationary models for cosmology. My model is 
somewhat different at the start  because I have no space or time either, and have 
to generate a bit-string model that  describes all three at the same time. But by 
the t ime my model reaches fireball time, it looks very much like the standard 
cosmological models. 
Ch i r ikov :  Why do you need random numbers? 
Noyes :  Why do I? Because the basic program I use (a) picks two strings at 
random to generate the next string, and (b) adjoins an arbi t rary bit to the 
growing end of each string if the result of the first process is a null string. This 
model implies a statistically predictable distribution of bit-strings and hence of 
particles. This has not been worked out in detail, and may fail to be in accord 
with observation in the same sense that any specific cosmological model can fail. 
But  the first order results look promising (see table). What  I have yet to do 
is to compute the power spectrum of the early fluctuations of the background 
radiation, as measured by the COBE satellite. These results have already killed 
the majori ty of pre-existing cosmological models, and mine might suffer the 
same fate. Fortunately, my cosmology is to a certain extent independent of my 
elementary particle physics, and one might survive without the other. 
Ch i r i kov :  Have you quarks in your theory? 
Noyes :  Yes. I have the full standard model containing three generations of 
quarks and leptons. I have all the observed particles and predict no unobserved 
particles such as the Higgs bosons. 
Ch i r i kov :  Can you explain quark confinement? 
Noyes :  Yes. That ' s  easy if you first grant my proof that  there are at most 
three asymptotic homogeneous and isotropic dimensions in a bit-string theory. 
This is a special case of McGoveran's Theorem, which applies to any finite and 
discrete metric theory. The basic result on which it rests is due to Feller (Prob- 
ability Theory and its Applications, Wiley, 1950, 9. 247) and states tha t  that  
for D independent Bernoulli sequences of length n the probability tha t  they 
will accumulate the same number, n, of ones after n steps is proportional to 

--(D--l) 
n 2 . Consequently, this criterion - -  which is used to define D homogeneous 
and isotropic reference directions in bit-string physics - -  can continue to keep on 
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being met for n indefinitely large and D -- 2 (probability proportional to n- �89 
or D = 3 (probability proportional to n - l ) ,  but that  it cannot be met for four 
or more sequences. Hence spacial dimensions greater than three compactify, and 
are not encountered asymptotically. We are therefore allowed three conserved 
quantum numbers to label three independent asymptotic dimensions. Guided 
by experience, and the way our model provides conserved quantum numbers, we 
can take these to be charge, baryon number, and lepton number. Then color, and 
consequently colored quark and gluon systems, are confined. Colorless systems 
such as baryons and mesons can still be observed asymptotically in my theory. 
Chi r ikov:  So, why only quarks? 
Noyes :  Only three asymptotically conserved particulate quantum numbers can 
be defined because of the way I construct space and time. 
Chi r ikov:  But why only quarks? Space- time for all particles is the same. 
Noyes :  That  is not true in my theory. That  is just the point. My space, time, and 
particles are constructed in very different ways from bit-strings. And those bit- 
strings specify both the discrete quantum numbers and the space-time character 
of the particle states. For example, the first sixteen bits can be used for the 
quantum numbers and the remainder of the string for the space-time state (until 
we come to multi-particle systems and/or  gravitation). [For a more detailed 
description see my paper and references therein.] 
Chi r ikov:  Feynman's diagrams is a perturbation theory. 
Noyes :  I disagree. Once one can handle strong interactions, either using QCD, 
or in my way, all observable processes can be computed from the Feynman 
diagrams. This is Heisenberg's and Chew's basic reason for espousing S-Matrix 
theory. In fact, because of the mathematical ambiguities of quantum field theory, 
Tini Veltman has recently asserted that  the Feynman diagrams are the theory. 
Chi r ikov:  There are many of them. 
Noyes :  I do not need many of them to get accurate and interesting results. 
Chi r ikov:  You simply truncate the perturbation series. 
Noyes :  It  is true that  an approximation is being made. but in contrast to ex- 
pansions in powers of the coupling constants - -  which are at best asymptotic, 
and don' t  work for strong interactions in any case - -  my expansion is in terms 
of particle number, and is often rapidly convergent. You see, the masses in this 
theory are finite to begin with, and close to the empirical values. The corrections 
are small. 
Ch i r ikov :  Back to quarks. Quarks have in your theory a different space, yes? 
Noyes :  They  reside inside rotating black holes (protons, neutrons, mesons) or 
in the space near such sources as virtual particles. 
Chi r ikov :  But why are they confined, I missed. 
Noyes :  Because you cannot define color in addition to baryon-number, lepton- 
number and charge at large distances from interaction regions. You cannot get 
there. 
Chi r ikov :  And what about mesons? 
Noyes :  Mesons are bound states of quark-antiquark pairs, in a good first (valence 
quark) approximation. 
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Chi r ikov :  Are they also confined in your theory? 
Noyes :  Mesons are a colorless combination of quarks and anti-quarks. Therefore 
they are not  confined, in my theory, or in conventional theory, or in the labora- 
tory. Of course they are unstable, and decay ultimately to colorless leptons and 
gamma rays. So long as they exist, the quarks inside them are confined. To a 
good approximation, you can often treat  them as composed of a quark-antiquark 
pair. 
Ch i r ikov :  Why? 

Noyes :  That  is what my theory gives. The correct interpretation of the coupling 
constant is obtained from the consistency of the model. 
Chi r ikov :  Which coupling? 
Noyes :  The coupling of any particle anti-particle pair which, to a good approxi- 
mation forms a stable or long lived particle. Call the particle a, the anti-particle 
~, their individual masses rna = m -- m~, the mass of the meson to which they 

2 g2 bind #, and the coupling constant gaa~, or for short. Then taking s to be the 
Mandelstam variable (square of the invariant four momentum of the particle- 
antiparticle system), and calling the bound state wave function, which is a pole 

in the S-matrix, r = - ~ ,  the unitarity of the S-matrix requires that  
s - - t ~  ~ 

j r ( /  g4#2 
r  = 1 -- 

m2_t,2 ) 4rn 2 _ #2 

Thus this first approximation relates the coupling constant to the masses. For 
more details see D.O.McGoveran and H.P.Noyes, Phys i c s  Essays ,  4, 115 (1991). 
Chi r ikov :  But what are the original particles? Not quarks? 
Noyes :  What  I am doing is quite general. In fact as noted in the reference this 
argument gives Bohr's 1915 relativistic formula for the energy levels of hydrogen, 
and also a good value for the pion-nucleon coupling constant. 
Chi r ikov :  But not for quarks. 
Noyes :  Why not, in an S-matrix theory? Valence quark-antiquark pairs bind to 
form colorless mesons. But the formula can also be used for describing a positive 
pion as the bound state of a proton and anti-neutron as in the Fermi-Yang model. 
In fact this give a good value for the pion-nucleon coupling constant, as given in 
the table in my paper. 
Chi r ikov :  But why you cannot split this system into quarks? This is the prob- 
lem. 
Noyes :  Because of my boundary condition from McGoveran's Theorem, quarks 
can only be evidenced indirectly as intermediate states in Feynman diagrams, 
or S-matrix elements. It is like exciting the states in a hydrogen atom using a 
probe which can only deliver an energy below ionization threshold. In effect, 
color confinement makes the equivalent threshold in the quark systems infinite. 
So quarks are never seen as free particles. But they have indirect consequences 
which are evidenced by the energy dependence of scattering cross sections at 
high energy. 



Discussion of H. Pierre Noyes' Paper 187 

Chi r ikov:  Do you mean that  you adjusted this interpretation in such a special 
way as to obtain quark confinement? Because there are many particles but  only 
quarks are confined. How is that  possible in a general system. 
Noyes :  In my system, as in QCD, quarks can only be excited as internal de- 
grees of freedom. This is the meaning of color confinement in both theories. In 
the conventional theory there are many models for the confining force, but so 
far none have been derived from first principles. In my theory, I do not need 
to provide a model for the confining force. A more detailed dynamical theory 
than I have developed so far should be able to calculate effects due confinement. 
As I have tried to explain already, my construction of space, time and quantum 
numbers only allows three absolutely conserved quantum numbers to be con- 
served asymptotically, and the others must be confined. I take the three to be 
charge, lepton number and baryon number. This leaves color confined. Tha t  is 
my boundary condition. 
Chi r ikov:  Why not colour? 
Noyes :  Empirically, the first three are conserved asymptotically, and color is not 
observed asymptotically. This forces my interpretation of McGoveran's theorem. 
Chi r ikov :  Which theorem? 
Noyes :  McGoveran's theorem, as explained above, leaves me only three choices 
for asymptotically conserved quantum numbers. Having picked three that ,  so far 
as we know today a r e  conserved, there is no room left for color. I conclude that  
it must be confined. Now, maybe this isn't a good argument. 
Chi r ikov :  But in this sense any of those three particles might become confined 
in your theory. 
Noyes :  No, not if I compare the structures given by my construction of con- 
served quantum numbers with what is known from experiment. I find a neutrino- 
antineutrino pair at level one, and the associated charged leptons at level 2, which 
gives me two of my three conserved quantum numbers. When I go to level 3 I 
find quantum numbers that  can be interpreted as baryons, but also more struc- 
ture that  can be interpreted as colored quarks and gluons. The quarks couple 
to the same neutrinos, and the gluons allow me to form colorless combinations 
that  can be interpreted as protons, neutrons, pions, and so on. But McGoveran's 
theorem allows me to choose only one of the quantum numbers I can form to be 
asymptotic, and I take it to be baryon number. The rest, including color, must 
be confined. 
Chi r ikov :  But if for example proton would be unstable, then the quarks were 
not confined? 
Noyes :  Then the whole thing does not work. 
Chi r ikov:  O.K. 
Noyes :  Or, depending on what the decay mode is which is observed, I suspect 
it would not contain enough stable quarks to conserve baryon number. I also 
doubt that  we would see asymptotic color. So my scheme would have to be mod- 
ified. Perhaps the three conserved quantum numbers would be fermion number, 
charge, and weak isospin. I might be able to make a consistent theory along 
those lines, but I would have to see. I think the observation of proton decay 
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would be as much of an embarrassment for me as the many failures to observe 
it at a predicted rate should be for the grand unifiers. 
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1 I n t r o d u c t i o n  

In this paper we continue the foundational study of photons as particles without 
wave properties (Suppes and de Barros (1994a), Suppes and de Barros (1994b)). 
In the earlier work we assumed: (i) Photons are emitted by harmonically oscil- 
lating sources. (ii) They have definite trajectories. (iii) They have a probability 
of being scattered at or absorbed in the near presence of matter.  (iv) Detec- 
tors, like sources , are periodic. (v) Photons have positive and negative states 
which locally interfere, i. e. annihilate each other, when being absorbed. In this 
framework we are able to derive standard diffraction and interference results. We 
thereby eliminate in this approach wave-particle duality for photons, and give 
nonparadoxical answers to standard questions about interference. For example, 
in the two-slit experiment each photon goes through only one slit. 

In the earlier work we did not construct a stochastically complete model of 
the monochromatic harmonically oscillatory point source, but only assumed an 
expectation density for the emission of positive and negative photons, namely 
n+ (t) = A ( l •  with t > 0. In the present paper we derive this equation (see 
(8) in Section 1) as the expectation density in free space-time from a probabilistic 
model of a two-level atom as source, which easily generalizes to N atoms. We also 
can go further and derive from the model the cross-correlation of two arbi t rary 
space-time points, but  we do not include that  calculation in this paper. 

In Section 2 we look at photons as particles which have, in certain special 
environments, ergodic motion. In particular, we study the way in which photons 
having definite trajectories can move in ergodic fashion like billiard bMls on a 
rectangular table with a convex obstacle in the middle. Such billiards are called 
Sinai billiards after the Russian mathematician Ya.G.Sinai. Their  ergodic motion 
is strongly chaotic. 

Finally, in Section 3 we examine the isomorphism of deterministic and stochas- 
tic models of photon ergodic motions. Here we use important results of D.S.Orn- 
stein and his colleagues on the indistinguishability of these two kinds of models 
of ergodic behavior. 

The positive and negative photons we introduce can well be thought of as 
virtual photons, for in a detector they locally interfere with each other, and only 
the excess of one or the other kind is observable (for further details see Suppes 
and de Barros (1994b)). 
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2 T w o - L e v e l  A t o m  as  S o u r c e  

We have several processes at the source, which we initially t reat  as a single 
atom. In this version we begin by making t ime discrete, with the t ime between 
the beginning of successive trials on the order of the optical period, 10 -15 s. 

Process L Pure Periodic Process. On an odd trial a photon in the positive 
s ta te  may  be emitted or absorbed, and on an even trim a photon in the  negative 
s ta te  may  be emit ted or absorbed. This process is defined by the function 

f+(n) = n mod 2, (1) 

where n is the trial number. Intuitively, we use (1) to make the probabil i ty zero 
of an a tom emitt ing or absorbing a negative photon on trial n if n is odd, and 
probabil i ty zero for a positive photon if n is even. This is our periodicity. 

If, on an even-numbered trial, the atom is in the excited state, which we label 
1, at  the beginning of the trial, then there is a positive probability, but not in 
general probabili ty 1, of emitt ing a negative photon, and similarly on odd trials 
for a positive photon. Correspondingly we use 0 as the label for the ground state  

Process II. Exponential Waiting Times. We use a discrete Markov chain in 
the two states 0 and 1 to give us in the mean the geometric distribution of 
waiting for absorption or emission, but with different parameters.  The  geometric 
distribution is, of course, the discrete analogue of the exponential distr ibution 
in continuous time. The transition matrix is: 

01c0 0 11 - e l  Cl (2 )  

1-CO 

Thus,  CO is the probabili ty of absorbing a positive or negative photon when in the 
ground state at the beginning of a trial. In our simple model meant  for low-energy 
experiments,  e.g., those dealing with the optical part  of the electromagnetic 
spectrum, we exclude the possibility of multiple-photon absorption or emission 
on a given trial. The parameter  Cl is just the probabili ty of emitt ing a positive 
or negative photon when in the excited state at the beginning of a trial. 

Processes I ~ H together. The description just given of absorption and emis- 
sion of photons is for Process II  alone. Combined with the periodicity of Process 
I, we can write a single matrix,  but one that  depends on whether the trial number  
is odd or even: 

1 0 
1 1 - c l f ~ ( n )  clf+(n ) (3) 
0 cof+(n) 1- cof+(n) 

where f+  (n) = 1 if n is odd and 0 if n is even, and contrariwise for f_  (n). 
Asymptotic Distribution of States. The Markov chain characterized by (2), 

for Co, Cl ~ 0 is obviously ergodic, i.e., there exists a unique asymptot ic  station- 
ary distribution independent of the initial probabili ty of being in either state. 
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For computing this distribution we can ignore the distinction between the even 
and odd numbered trials, as expanded in (3), and consider only the process 
characterized by (2). 

The asymptotic distribution is just obtained from the recursion: 

Solving, 

and 

Po =c lp l+(1 -co )Po .  (4) 

co 
pl = �9 (6) 

co ~- C1 

SO, asymptotically, for N atoms, the expected number in the ground state is 
c l N  

co+C1 " 
Properties of Photons. Omitting here polarization phenomena, a photon is a 

3-tuple (w, c, +),  where w is the frequency of oscillation of the source, c is the 
velocity, and + are the two possible states already discussed. 

Process III. Direction of Emission. We assume statistical independence from 
trial to trial in the direction of emission of photons by a single atom. We also 
assume that  the probability of direction of emission is spherically symmetrical 
around the point source. For this analysis we further restrict ourselves to two 
dimensions and a scalar field, as is common in the study, e.g., of optical inter- 
ference in the two-slit experiment, or the "billiards" case discussed in the next 
section. 

Periodic Properties of f • Various properties are needed. 
(i) If ~ is even, f~-(n + ~a) = f+  (n). 
(ii) If n is even, f+ (n + ~) = f+ (~), 
(iii) f:~(n + ~a) = f•  + 1)f• + f+(n)f+(~a + 1). 

This is easy to prove by considering the four cases: n is odd or even, and so is 

For r ~ 0, 

P(photon  being at (r, 0, t)] emission at t ' )=  4-~6( t -  t ' -  ~). 

We now compute the unconditional probability of emission at t', where gr.st. 
is the event of being in the ground state. 

P(=k emission at t') = E P ( +  emission at t'l absorption at t") 
t "  < t '  

�9 P(absorption at t ' )  

= E E P(:t: emission at t ' labsorption at t") 
t , / < t  , t H / < t  H 

�9 P(absorption at t ' lgr.st ,  at t'") P(gr.st .  at t"') 
t' r  , . . . . .  c l  . ( 7 )  

= E E C l ( I _ _ C l  ) -- f •  C O - [ - C l  

Cl 
; 0  - - -  ( 5 )  

c 0 + c l  
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The continuous analogue of (7) is obvious, where f~0 corresponds to co and 
f~l to C 1. 

P ( •  emission at t') = 

t '  $" 

---- ,, ,J COSWt  )130 e-f~~ - t  )~0 q- ]31 
--00 --00 

-- ~0 -t- ~1 (2 :t: 5 coswt ) e -B~( t ' - t ' ' )  

/~1 1 1 , 
- + (5  + 5 cos t ). (s) 

Let us abbreviate the space-time position as i = (ri, 0i, ti). Then the random 
variables for positive and negative photons are defined as: 

1 if there is a • photon (from the single atom) at (ri, 0i, ti), (9) 
Xi(=k) = 0 otherwise. 

Then, since ti - t~ -- ~ ,  we have 

1 /~1 (1 1 c o s w ( t i -  -~)), (10) 
E(Xi(: t=))  - 27rri /3o -b ill" 2 4- 5 

which is the form of the expectation density, h~: = E ( X i ( : k ) ) ,  for positive and 
negative photons derived in Suppes and de Barros (1994b), but here for a single- 
atom source. 

3 P h o t o n s  a s  B i l l i a r d s  

We now move to the study of photons as particles executing ergodic motions. Let 
us begin with a rectangular box that  has reflecting sides. We assume the classical 
law of reflection, that  is, the angle of reflection equals the angle of incidence. An 
ideal laser could execute the periodic motion shown in Figure 1 in such a box. 
In fact, in classical mechanics it is always in terms of such motions that  billiards 
are used as standard examples of mechanical systems. It is only in the modern 
study of billiards that  matters become much more complicated. Intuitively it 
is easy to describe how to get such additional complication. We add a convex 
obstacle to the rectangular box with reflecting sides as shown in Figure 2. 

Now the path of the photon emitted by an ideal laser executes the motion 
of a photon as a Sinai billiard. Sinai and other investigators have studied very 
thoroughly the mechanical motion of a point particle in such a rectangular box 
with a convex obstacle and with the collisions of the particle observing the 
classical law of reflection as well as the law of perfect elasticity. In the case 
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Fig. 1. Periodic photon billiard motion 

of photons we drop the concept of elasticity but  have the reflection take place 
without  loss of energy. 

I t  is worthwhile to analyze the law of reflection more carefully in our theory. 
We give a semiclassical derivation in tha t  we assume the reflecting walls are 
continuous perfect conductors in the sense of classical electromagnetic theory. 
The boundary  condition for a scalar field is tha t  it be zero at the conductor 
surface. We can show how we obtain this result most clearly by returning to the 
temporal ly  discrete model introduced at the beginning of Section 1. For a perfect 
conductor we change the basic assumptions as follows. We modify the transition 
matr ix  (3) to reflect the assumption tha t  in reflection a photon changes its s tate 
from positive to negative and vice versa. 

This single change for perfect conductors enables us to show tha t  the defined 
scalar electric field at the reflecting surface is zero. For a single photon, we have 
at once from the new transit ion matr ix  below tha t  at a point of the surface, 
h+ -- h_ and therefore $ = 0. We use here the definition of the field g given in 

F-,o(h+-h_) Suppes and de Barros (1994b), i.e., g - v/~++h - . We thus replace (3) by the 
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Fig. 2. Photon billiard motion with a convex obstacle 

matr ix  

1- 1+ 0 
1- 1 - c l f+(n)  0 cl f+(n)  
1+ 0 1 - c l f_ (n )  o f - ( n )  
0 co f_ (n )  co f+ (n )  I - co 

( I i )  

I t  follows from fundamental  results of  Sinai (1970) tha t  the following theorem 
can be proved. 

T h e o r e m  1 The motion of a photon as a Sinai billiard, as shown in Figure 2, 
is ergodic. 

We can see this even more clearly by showing the picture of a simulation of the 
motion of a photon as a Sinai billiard. I t  is intuitively clear tha t  we get then the 
following corollary from the ergodic motion. 

C o r o l l a r y  1 The motion of a photon as a Sinai billiard is strongly chaotic. 

We say more about  this chaos later, but  remember the chaos is derived here 
from our conception of photons as point particles executing linear trajectories 
between points of reflection. 
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Measurement of photons. The chaotic motion of photons is not a topic usually 
discussed in the many  physical discussions of chaos. Why is this? The answer 
is tha t  in terms of observation using, for example, photodetectors, we can only 
measure the intensity of a light source averaged over time. I t  takes about  10 -9 
seconds for an a tom to absorb a photon. In contrast, a single period of an opti- 
cal source is about  10 -15 seconds. Thus a photon that  is emitted by an optical 
source takes in terms the period of the source on average about  6 orders of mag- 
nitude to be absorbed. This averaging process means that  there is little hope of 
observing directly the chaotic motion of an individual photon. These remarks 
about  averaging apply to quantum mechanics and classical electromagnetic the- 
ory of optical phenomena, as well as to the probabilistic a tom model developed 
in the previous section. The  average intensities predicted by quantum mechanics, 
by semi-classical application of classical electromagnetic theory, or by the kinds 
of probabilistic computat ions developed in the previous section are all average 
intensities tha t  wipe out in the measurement process any evidence of chaos in 
the motion of an individual photon. 

This means tha t  our straightforward "free particle" theory of photons leads 
directly to a theory of chaos for photons, but the chaos is not observable by 
s tandard means. 

4 D e t e r m i n i s t i c  and Stochas t i c  M o d e l s  

I t  is widespread folklore in discussions of chaos by physicists tha t  most impor tant  
physical examples of chaos are deterministic. On the other hand, there is a 
variety of evidence, especially mathematical  arguments, tha t  associated with 
chaos, particularly in the strongest chaotic examples, are phenomena tha t  can 
only be regarded as genuinely random or stochastic in nature. I t  would be easy 
to argue tha t  one has got to choose either the deterministic or stochastic view 
of phenomena, and at least for a given set of cases, it is not possible to move 
back and forth in a coherent fashion. It  is this view, also perhaps par t  of the 
folklore, tha t  we want to argue very much against in the present discussion. We 
shall refer occasionally to our work on photons, but we will be depending much 
more on general ideas from ergodic theory and in particular on the strong kind of 
isomorphism theorems proved by Donald Ornstein and his colleagues. Before we 
turn to the details, there are one or two other points we want to discuss in a very 
intuitive fashion. For example, if we take a billiard model of the photon, or if you 
want, a mechanical particle, and we consider the deterministic model in the case 
of an ergodic motion, tha t  is, one, for example, where there is a convex obstacle 
as shown in Figure 2, then there is an empirically indistinguishable stochastic 
model. The  response to this isomorphism might be, "Well yes, but for the case 
of ergodic motion where the convex object is present we should choose either the 
simple Newtonian model or in the case of the photon, the simple deterministic 
reflection model, really from geometrical optics". Because this Newtonian or 
geometrical optical model works so well in the nonergodic periodic case when 
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there is no convex object, it is natural  to say that  it is not a real choice between 
the deterministic or stochastic models. Because of its generalizability the choice 
obviously is the deterministic model. 

But  this argument  can run too far and into trouble when we turn to a wider 
set of cases. On the same line we would be pushed to argue that  the only kind 
of complete physical model for quantum mechanics must be a deterministic one, 
for example the kind advocated by Bohm, but the evidence once we turn to 
quan tum mechanical phenomena seem far from persuasive for selecting as the 
unique intuitively correct model the deterministic one. Here there is much to 
be said for choosing the stochastic model, which is much closer in spirit to 
the s tandard interpretation of classical quantum mechanics. Our point, without  
going into details at this juncture, is tha t  whether we intuitively believe the 
model should be deterministic or stochastic will vary with the particular physical 
phenomena we are considering. Wha t  is fundamental is that  independent of 
this variation of choice of examples or experiments is tha t  when we do have 
chaotic phenomena, especially when we have ergodic phenomena, then we are 
in a position to choose either a deterministic or stochastic model. When such a 
choice between different models has occurred previously in phys ics- -and  it has 
occured repeatedly in a variety of examples, such as free choice of a frame of 
reference in Galilean relativity, or choice between the Heisenberg or Schroedinger 
representation in quantum mechanics-- ,  the natural move is toward a more 
abs t rac t  concept of invariance. Wha t  is especially interesting about the empirical 
indistinguishability and the resulting abstract  invariance in the present case, is 
t ha t  at the mathemat ica l  level the different kinds of models are inconsistent, 
t ha t  is, the assumption of both the deterministic and the stochastic model leads 
to a contradiction when fully spelled out. On the other hand, it leads to no 
contradiction at the level of observations, as we shall see in an impor tant  class 
of ergodic cases. 

Entropy and measure-theoretic isomorphism. In order to look at the entropy 
of appropriate  processes, we begin with some of the simplest examples. Wi thout  
much thought  it is clear tha t  the simplest example is a Bernoulli process with 
a finite number of alternatives sad  discrete trials. We shall call a finite discrete 
Bernoulli process any stochastic process with the following features�9 I t  is a prob- 
ability space with a t ransformation namely a quadruple (/2, ~,  #, T) satisfying 
the following assumptions: There is a finite set S and a probabili ty measure Pi 
on S such tha t  ~ i e s P ~  = 1 and where Z is the set of integers, Y2 = S Z, ~ is 
the product  a-algebra on ~2, tt is equal to the product measure on Y2, and T is 
a left shift on Y2 which means tha t  if x , y  are in /2  and for every n y,,-1 = xn, 
then T(x)  = y. We say more about  the shift T below. Notice that  in this defi- 
nition x and y are doubly infinite sequences, that  is, they are sequences going 
from n - - o o  to n = oo and the product measure guarantees tha t  we have 
independence from trial to trial. Continuing with our Bernoulli example,  and 
having it in the back of our minds, but not restricted to it, if we have a stochas- 
tic process defined in terms of a doubly infinite sequence of random variables, 
�9 �9 �9 X _ I ,  X0,  X 1 , .  �9 �9 X n , . . .  then we define the entropy rate as the following 
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limit, if it exists, for a finite sequence of random variables. 

1 
H ( X ) =  lim 1 H ( X _ n , . . .  X o , . . .  X n )  (12) 

n--*oo 2n + ' ' 

and for the independence that  is the strong feature of the Bernoulli process we 
have at once 

H(A') = lim g ( X - n , . . . ,  X o , . . . ,  X n )  = lim 2n + ~ g ( X o )  = H(Xo) .  
n--.oo 2n + 1 n-~oo 2n + 

(la) 
By a similar line of argument for a finite-state discrete Markov chain we get for 
its entropy rate the following expression: 

H ( X )  = - ~-~p, ~-~p,j logp,j. (14) 
j 

Note tha t  of course for the Markov process always )-~j p~j = 1. 
In the ergodic literature there has been an intense study of how the entropy 

rate of a process relates to the measure-theoretic isomorphism of processes. (Ter- 
minology differs in the literature; what we call entropy rate is often just  called 
entropy, but  there are several different but closely related concepts of entropy, 
and the differences are not just a matter  of terminology.) For that  purpose we 
need an explicit definition of isomorphism. Let us first begin with a s tandard 
probability space (f2, ~}, P),  where it is understood that  ~ is a a-additive alge- 
bra of subsets of f2 and P is a a-additive probability measure on ~. We now 
consider a mapping T from f2 to f2. We say that  T is measurable if and only 
if A E ~ --* T - 1 A  = {w : Tw E A} E ~, and even more important,  T is 
measure preserving, that  is, P ( T - 1 A )  = P(A) .  T is invertible if the following 
three conditions hold: (i) T is 1 - 1, (ii) Tf2 = f2, and (iii) If A E [} then 
T A  = {Tw : w E A}  E ~2. It is the measure preserving shift T introduced above 
that  is important.  Intuitively this property corresponds to stationarity of the 
process--a  time shift does not affect the probability laws of the process. 

We now characterize isomorphism of two probability spaces on each of which 
there is given a measure-preserving transformation, whose domain and range 
need only be subsets of measure one, to avoid uninteresting complications with 
sets of measure zero that  are subsets of f2 or f-2'. Then we say (f2, ~, P, T)  is 
isomorphic in the measure-theoretic sense to (f2', ~}', P ' ,  T ')  if and only if there 
exists a function ~: f20 --* f2~ where f20 E ~, f2~ E ~' ,  P(f20) = P(f2~) ---- 1, and 

satisfies the following conditions: 
(i) ~ i s l - 1 ,  
(ii) If A C ~2o & A' = ~A then A E ~ iff A' E ~' ,  

and if A E 
P(A)  = P ' (A ' ) ,  

(iii) Tf20 _c f-20 & T'f2~ c_ f2~, 
(iv) For any w in f20 

qo(Tw) = T'~(w). 
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To show how recent fundamental results are about the relation between en- 
t ropy rate and measure-theoretic isomorphism, it was an open question in the 
1950s whether the two finite state discrete Bernoulli processes B(1 /2 ,1 /2 )  and 
B(1/3 ,  1/3, 1/3) are isomorphic. (The notation here should be clear B(1/2 ,  1/2) 
means that  the probability for the Bernoulli process with two outcomes on each 
trial is tha t  for each trial the probability of one alternative is 1/2 and of the 
other 1/2). The following theorem clarified the situation. 

T h e o r e m  2 (Kolmogorov (1958), Kolmogorov (1959) and Sinai (1959)). I f  two 
finite-state, discrete Bernoulli or Markov processes have different entropy rates, 
then they are not isomorphic in the measure-theoretic sense. 

Then the question became whether or not entropy is a complete invariant for 
measure-theoretic isomorphism. The following theorem was proved a few years 
later by Ornstein. 

T h e o r e m  3 (Ornstein (1970)). If two finite-state, discrete Bernoulli processes 
have the same entropy rate then they are isomorphic in the measure-theoretic 
sense. 

This result was then soon easily extended. 

T h e o r e m  4 Any two irreducible, stationary, finite-state, discrete Markov pro- 
cesses are isomorphic in the measure-theoretic sense i /and  only if  they have the 
same periodicity and the same entropy rate. 

We then obtain: 

C o r o l l a r y  2 An irreducible, stationary, finite-state discrete Markov process is 
isomorphic in the measure-theoretic to a finite-state discrete Bernoulli process 
of the same entropy rate if  and only if the Markov process is aperiodic. 

We can go further in terms of photons and billiards with the concept of 
measure-theoretic isomorphism. To keep things in the context of finite-state dis- 
crete processes, we can form a finite partition of the free surface on the billiard 
table, as shown in Figure 3. This constitutes a finite partit ion of the space 
of possible trajectories for the photon or billiard and we correspondingly make 
time discrete in terms of movement from one element of the parti t ion to another. 
With  these constructive approximations, the following theorem has been proved: 

T h e o r e m  5 (GaUavotti and Ornstein (1974)). With the discrete approximation 
of the continuous flow just described above, the discrete deterministic model of 
the photon or billiard is isomorphic in the measure-theoretic sense to a finite- 
state discrete Bernoulli process model of the motion of the photon or billiard. 
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Fig. 3. Finite partition of the billiard table with convex obstacles 

It should be noted that instead of this theorem we could have stated a theorem 
for continuous time and such results are to be found in the paper by Gallavotti  
and Ornstein. What  the Gallavotti and Ornstein theorem shows is that the 
discrete mechanics of billiard balls is in the measure-theoretic sense isomorphic 
to a discrete Bernoulli analysis of  the same phenomena. However, it is to be 
emphasized that in order to claim that intuitively the two kinds of analysis are 
indistinguishable from observation we need stricter concepts. 

To show this, we need not even consider something as complicated as the 
billiard example but consider only a first-order Markov process and a Bernoulli  
process that have the same entropy rate and therefore are isomorphic in the 
measure-theoretic sense, but it is also easy to show by very direct statistical tests 
whether a given sample path of any length, which is meant to approximate an 
infinite sequence, comes from a Bernoulli process or a first-order Markov process. 
There is for example a simple chi-square test for distinguishing between the 
two. It is a test for first-order versus zero-order dependency in the process. The 
analysis is statistical and of course cannot be inferred from a single observation, 
but the data are usually decisive even for finite sample paths that consist of no 
more than 100 or 200 trials. 

To spell out the details of this test, let n~j (t) denote the observed number of  
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cases (for several possible runs) in state i at  t - 1 and state j at t. Further, let 

n i ( t - 1 ) =  E n i j ( t ) ,  n i j =  E n i j ( t ) ,  n i =  E n i j .  
j t j 

The Markov character of the sequence of position random variables, or of 
other sequences of random variables, may be tested directly without recourse 
to theoretical details of the process. We can test  the null hypothesis tha t  the 
outcomes of trims are statistically independent (zero-order process) against the 
alternative hypothesis that  the process is a first-order Markov chain by comput-  
ing the sum 

X 2 = ~ ni \ n~ -~- 
ij N 

where nj = ~-~i nij, N : ~ i , j  nij, and nij and n~ are as defined above. Again, 

,1 "2 has the usual limiting distribution with (m - 1) 2 degrees of freedom. (A 
Bayesian modification of this test  is easily given.) 

A second null hypothesis is tha t  the process is a first-order Markov chain 
against the hypothesis tha t  it is a second-order chain. Rejection of the null hy- 
pothesis in this case would mean that  the position probabilities can be predicted 
bet ter  by observing the two immediately preceding positions rather than  simply 
the single immediately preceding one, and so on for n + lst-order vs n th  order. 
Similar chi-square tests can be formulated for stationarity. 

Congruence. To obtain a stricter sense of isomorphism it is natural  to impose 
a geometric conditon, especially for a wide variety of physical examples of ergodic 
systems. Here we follow Ornstein and Weiss (1991). Let a > 0 and let X = 
($2, ~,  P, T) and X' = (~', ~1, p~, T ~) be two spaces isomorphic under ~ in the 
measure-theoretic sense. Then X and X ~ are a-congruent if and only if there is a 
function g from $2 to a metric space (with d the metric) and a function gl from 
$2' to the same metric space such that  for any w in $2, d(g(w),gl(~(w))) < a 
except for a set of measure < c~. 

Intuitively the parameter  a reflects our inability to measure physical quanti- 
ties, inlcuding geometric ones, with infinite accuracy. Wha t  is significant is tha t  
a-congruence for small a ,  can be proved for Sinai billiards, and thus photons 
in a Sinai billiard box. And when a is chosen at the finite limit of our mea- 
surement accuracy, the Newtonian mechanical and a Markov process model of a 
Sinai billiard are observationMly indistinguishable, as they are a-congruent.  

Stated informally, we then have the fundamental  result. 

T h e o r e m  6 Using the discrete approximation described just before Theorem 5, 
the discrete deterministic model of the photon or billiard is observationally in- 
distinguishable from a finite-state discrete Markov model of the motion of the 
photon or billiard. 

I t  is important  to note tha t  Theorem 6 is not true if the Markov model is 
replaced by a Bernoulli model. The observable dependencies discussed above, 
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and for which a chi-square test  was stated, rule out the Bernoulli model as a 
candidate for being a-congruent  to the deterministic billiard model. 
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Discussion of Pat Suppes' Paper 

Bat te rman,  Chirikov, Miller, Noyes, Schurz, Suppes, Weingartner 

C h i r i k o v :  Let 's  come back to the Ornstein theorem that  there are some pro- 
cesses which cannot be distinguished as deterministic. You promised to give an 
example. 

S u p p e s :  Yes, the example is from this reference of Galavotti  and Ornstein. 
C h i r i k o v :  Sinai Billiard? 
S u p p e s :  Yes. 

C h i r i k o v :  Why you cannot distinguish it? 
S u p p e s :  Well, tha t ' s  exactly what  the theorem is. The theorem states an iso- 
morphism between stochastic and deterministic modelingmodel!stochastic, in the 
article quoted from '91. 

C h i r i k o v :  But  my question is whether you could explain it. 
S u p p e s :  I am going to, but  I first say where the details are. The '91 article 
of Ornstein and Weiss gives details on the notion of c~-congruence and small 
deviations. 
C h i r i k o v :  For any t ime interval? 
S u p p e s :  You always have a small interval. You can observe as many  times as 
you want but you must be observing sets of positive measure. So you are not 
observing an individual point. 
C h i r i k o v :  Not an individual point but ... 
S u p p e s :  You're always observing a neighbourhood. 
C h i r i k o v :  In a short t ime interval. Then why you cannot follow the exact 
straight line directly? 
S u p p e s :  Of course, you can. But,  of course, the semi-Markov process can have 
tha t  too. I t ' s  in the given states to go straight along, then it changes. I t ' s  a 
semi-Markov process ... 
C h i r i k o v :  But  can you follow any part  of this t rajectory? 
S u p p e s :  I think, I can follow in the same way as the semi-Markov-process ... 
C h i r i k o v :  I don ' t  think so. There  must be some mathematical  trick. 
S u p p e s :  No, I don ' t  think so .... 
Mi l le r :  Could you remind us what  a semi-Markov-process is? 
S u p p e s :  I t ' s  a semi-Markov-process, because the parameters  of the holding t ime 
in a given state, vary with the state rather than being the same parameter  for 
any state. So you have an exponential holding t ime for any state. And tha t  
parameter  varies with the state. Remember  you are not going to predict exactly. 
T h a t ' s  very important .  I t ' s  different when you identify the point precisely. Then  
you have ideal observation points. You would not have a stochastic situation. 
C h i r i k o v :  But  does tha t  mean that  you cannot repeat  such t ra jectory ... 
S u p p e s :  Yes ... 
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Ch i r ikov :  ... for a sufficiently long time? But then this is the general property 
of exponential instability, or is it something new? 

S u p p e s :  It is not the exponential instability, we all agree on that. What  is new 
is to have a detailed isomorphism, to say you can just as well represent this by 
a semi-Markov-process. 
Ch i r ikov :  This I understand, but what I don' t  understand is that  you cannot 
distinguish for a sufficiently long time. 
S u p p e s :  But see, a semi-Markov-process can start out the same way. You can 
have a very good trip on the initial segment of the path. So we have that  what  
is important  ... 

Mil ler :  The conclusion you want to draw from that seems to me rather strong, if 
I understood it correctly. You show that there exist processes whose character is 
empirically undecidable: you cannot distinguish whether they are deterministic 
processes or semi-Markov-processes. You concluded something about determin- 
ism itself transcending experience. But what about other processes? Here we 
have some examples where we cannot make a distinction empirically. But you're 
surely not saying that  in all cases no discernment is possible. 

S u p p e s :  I used a phrase before determinism, universal determinism. 

Mil ler :  But universal determinism can be falsified, can't  it? 
S u p p e s :  No, the point here is what I am saying is not that  it can be falsified, 
it is a different point. The whole point concerns deterministic hidden variables. 
Well, at least in the present cases you cannot falsify determinism. But what  I 
am saying is not that  it is falsified. I am showing that it has a competitor - a 
conceptual competitor, that  is just as true as it is. 

Mil ler :  You mean, I hope, just unfalsified. 
S u p p e s :  Just as true - I mean, as they stand and fall together on these examples. 

Mil ler :  On these examples , but ... 
S u p p e s :  ... on these examples, yes. But that 's  the point, I mean, in other words 
if you believe in universal determinism then you must have metaphysical views 
to say this is the correct thing. 
Mil ler :  But are there other examples? 
S u p p e s :  Oh, there are a whole lot. I am giving examples here and one can 
generate lots of examples. 
Mil ler :  Now I 'm somewhat unhappy, because we seem to disagree so radically. 
I t ' s  certainly not the case that  all examples you can give allow either a deter- 
ministic or a stochastic interpretation. 

S u p p e s :  No ... 
Mil ler :  For instance, ... 
S u p p e s :  There may be some examples as you want it - by approximating them 
as finite, if you want to hold to the deterministic view. I actually think those 
examples are much rarer and we discuss them abstractly. I am more aggressive 
about  that  than you ... 
Mil ler :  ... and there are cases understandable only from the stochastic view- 
point. 
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S u p p e s :  No, I wanted to say in the stochastic case you can always build a 
deterministic model. 
Mi l le r :  I t ' s  always possible? 
S u p p e s :  Yes, and you would say at the end the deterministic cases, in those few 
cases tha t  are certainly deterministic, are special cases of stochastic behavior. 
So what  I wanted to say is tha t  we can have a complete overlap of the stochastic 
and deterministic. 
Mi l le r :  Tha t ' s  fine. I agree tha t  there can be universal deterministic laws in a 
stochastic world. I t ' s  the other way round ... 
S u p p e s :  With  universal we mean universal for some things. I t ' s  two senses. 
When  I use universal of determinism I use it in a stronger sense. Everything is 
deterministic ... 
Mi l l e r :  T h a t  is how I used it too. 
S u p p e s :  T h a t  is what  I am saying: that  would be to transcend experience. 
The  belief tha t  everything is deterministic transcends experience. I t  is not false 
but  you have a corresponding model that  is stochastic in many cases, generally 
stochastic, not properly one. I t  does equally well. I think tha t  is the sense in 
which it transcends. 
Schurz :  I would also like to ask a question for understanding the claim better.  
In my talk I had the consideration: ... isn't  tha t  effect true for all continuous 
deterministic processes and isn't  it just  a consequence of the fact tha t  I have a 
limited accuracy of measurement,  tha t  I always have a positive 6. So, for any 
finite sets of observations of real points up to some c, these observations will not 
decide whether  the process is deterministic or stochastic. 
S u p p e s :  Wait a moment.  Take out the convex obstacle and assume the classical 
billiard. 
Schurz :  Yes, what  is the difference? 
S u p p e s :  We have the ideal process here. The ideal process would be determin- 
istic and the  semi-Markov-process would be a trivial deterministic one. 
Schurz :  But  we could assume tha t  the ball moves slightly within this ~-constraints. 
S u p p e s :  No, no, no. I t  is very important  to play one game here at a time. I am 
saying: in the framework of Sinai billiards we now take out the convex obstacle. 
So, we are only looking at the mathematical  model of motion. The mathemat ica l  
model has its perfect periodicity in the standard ideal billiard table of a point 
particle. I am not saying, the real world is like that ,  I am saying, t ha t ' s  the 
mathemat ica l  model and with respect to that  mathemat ical  model the  theorem 
would not hold tha t  there is a genuine stochastic model of that .  I think, David 
and I agreed about  that.  Now, you may want to claim we could now shift the 
framework of the discussion to behavior in the real world and you may  want  to 
claim in the real world we always have some fluctuations. I think the case could 
be made. I ' m  very sympathet ic  to that .  But  I did want to make clear what  the 
conceptual si tuation is here in this special mathematical  model . . . .  I admit  ... 
I ' l l  be  happy w~th the fluctuations. 
Schurz :  Yes, I just  wanted to know, because your general philosophical corollary 
was tha t  no finite set of observations of any but positive accuracy may  verify or 
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falsify, may decide whether determinism is true ... 
S u p p e s :  For some processes - I didn't  say it for all. 
Schurz :  I think that  should be true for every process where you assume conti- 
nuity. Because you may always have fluctuations within the c-accuracy. 
S u p p e s :  But these mathematical models certainly assume continuity. What  you 
must be assuming is a good deal more about fluctuations: there are ever and ever 
fluctuations in a real world. Remember something: there is no such ideal billiard 
table in the real world. We are assuming here completely elastic collisions, no 
dissipation of energy due to frictions - sort of all goes on and on and on forever. 
So you see, we must now move to a more detailed arena, if you want to discuss 
what  happens in actual billiards. Because one thing that 's  absolutely agreed 
upon: the system is dissipative, the ball is not now moving. We have something 
different. We don' t  have anything like the assumptions needed for ergodicity. 
Schurz :  I am just saying I could make a stochastic model, predicting some small 
fluctuations - smaller than ~ - around this trajectory and I could not discriminate 
by my finite set of observations between these two descriptions ... 
S u p p e s :  You mean, when we put into the model now real fluctuations, so we 
had a real stochastic process ... 
Schurz :  Unobservable ones. 
S u p p e s :  Right. But, what is interesting here - I am usually always on side 
of realistic models. But at the present case there is some interesting in this 
idealization. Because it is in the ideal case. We certainly formulate this model 
conceptually and intuitively as being an example par excellence of a deterministic 
mechanical model with extremely simple, not complicated force laws. All you've 
got are elastic collisions. What  I find surprising is that  without introducing any of 
these complications about the real world - like fluctuations, dissipation, regular 
friction - we still get a stochastic isomorphism. That ' s  the point of the example. 
Schurz :  I agree. 
B a t t e r m a n :  In the Ornstein theorem exactly what do they mean by determin- 
ism? 
S u p p e s :  They mean a system of differential equations for which you could prove 
the existence and uniqueness of solutions for given initial and boundary condi- 
tions. 
B a t t e r m a n :  So do you mean a classical system. Sometimes the mathematicians 
seem to take a deterministic system to be one for which there is a transformation 
such that  give a state at one time, there is a unique state at the next time. 
S u p p e s :  More general. 
B a t t e r m a n :  Much more general. 
S u p p e s :  Yes. Because it is billiard, it is elastic collisions. They are in this case 
referring ... 
B a t t e r m a n :  ... to classical systems, to Hamiltonian systems. 
S u p p e s :  They are not necessarily Hamiltonian. 
B a t t e r m a n :  Under a broader sense of determinism, a Markov-chain would be 
deterministic? 
S u p p e s :  ... Semi-Markov. 
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B a t t e r m a n :  Semi-Markov. And that  those are deterministic in this broader 
sense, right? 
S u p p e s :  Well, not ordinarily. 
B a t t e r m a n :  Well, there is a transformation, a shift- transformation ... 
S u p p e s :  Right. The way one uses determinism in mechanical models, tha t ' s  not 
determinism. 
B a t t e r m a n :  O.K. 
S u p p e s :  Tha t  is an unusual definition. I t ' s  a fact tha t  you can have a shift. 
Obviously you can find tha t  it 's an unusual characterization. Let me give you 
another  characterization: I have a probabilistic process as random, if you want. 
For a given particle I have a sample path. Tha t  sample pa th  is of course a 
unique function of time. Now you can of course regard tha t  as deterministic - it 
is exhibited not in the theory but tha t ' s  the sample pa th  like, for example, if I 
flip a coin ten thousand times, I have a unique record of the sequence. But  tha t  
is an unusual sense of determinism. 
C h i r i k o v :  I don ' t  remember exactly the definition of Markov chain. But  suppose 
you have a stochastic system - stochastic or semi-Markov - and you observe a 
trajectory. Will the t ime when you can predict t ra jectory depend on the accuracy 
of the observation of the stochastic system. 
S u p p e s :  I am sure. Again you don' t  have an exact observation. In a probabilistic 
sense - you ask: well, what is the expected position of the particle at t ime t ~, 
given tha t  it was at t ime t in the Borel set A. We don ' t  know the exact position 
of the particle at t ime t. So we have the same problem for both. 
C h i r i k o v :  Wha t  I do not understand: the Stochastic system needs not to be 
exponentially unstable. 
S u p p e s :  Take the case of coin flipping - tha t ' s  an example. Wha t  do you think 
is the analogue of exponential instability in the case of coin flipping? 
C h i r i k o v :  No, I think that  in the case of coin flipping the prediction t ime will 
not depend on the accuracy as in a chaotic system. 
S u p p e s :  I t  is true, in that  example we observe independence. 
C h i r i k o v :  By this criterion I can distinguish. I can distinguish dynamical  chaos 
in deterministic system and stochastic system - by the dependence of prediction 
t ime on accuracy. 
S u p p e s :  I did not mean to introduce the coin flipping as giving us directly a 
satisfying isomorphism. I am not saying tha t  - by the way tha t ' s  misleading on 
my part .  I didn ' t  mean that.  
C h i r i k o v :  Wha t  does it mean that  in this stochastic system which you have 
formulated in your paper  there is exponential instability? 
S u p p e s :  Well, we now have a continuous t ime process and we take two different 
sample paths start ing in the same interval, we could certainly expect divergence 
- as we would expect for example in Brownian motion. Take Brownian motion for 
example. You certainly expect exponential divergence of the two sample paths. 
Take two particles. They start  at the same time, same Brownian motion, with 
same diffusion, we expect to have exponential divergence. I think tha t ' s  the same. 
C h i r i k o v :  O.K., I will think about  it. 
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W e i n g a r t n e r :  I want to make a short remark to this observational equivalence 
- observational equivalence as a new kind of symmetry.  I think tha t  it shows - 
and one should keep this in mind - that  one can look at symmetry  principles 
from two different points of view. One point is tha t  it is a positive thing in the 
sense tha t  you have a very general principle and it 's  invariant against so many  
changes. From another point of view you can look at it in a kind of negative 
sense - tha t  it makes symmetric  (equivalent) too much. So tha t  means tha t  
you get a loss of information, you loose distinctions tha t  are important .  One 
proper ty  is conserved, another is lost or becomes unobservable. There are some 
physicists who say that  too much invariance - for example t ime symmet ry  in 
QM - makes trouble since the laws seem to be incomplete. You can always see 
these symmetries from these two points of views. 
S u p p e s :  Well, I agree. Every principle of invariance can be interpreted as a lim- 
i tat ion of knowledge. So, for example, the desire to have a position of absolute 
rest is defeated if we accept Galilean invariance. So we have a limitation. We 
would like to think it were otherwise - I have some beautiful quotations of New- 
ton 's  about  absolute rest - maybe in some distant place of the universe, there is 
something at absolute rest. But  in any case, we know it 's  not nearby. So Newton 
does not stop the search. But if we accept Galilean invariance, then we are drop- 
ping the search for an object tha t  is at absolute rest. More than  the contention, 
we drop the concept of absolute rest. But you know another example: Aristotle 
is very firm about orientation. You have a natural  up and you have a natural  
down. But, surprisingly enough, Aristotle's model is not par t  of Euclidean geom- 
etry. So, in geometry it is not formulated which could well have been, - namely, 
a geometry of orientation. And so, if we just use Euclidean geometry we can ' t  
speak about  orientation. We can ' t  talk about  it. So I agree with your remarks. 
C h i r i k o v :  But  if in nature such a symmetry  exists, what  to do? (Laughing) The 
question is not whether it would offend, but whether  it is wrong or true. 
S u p p e s :  Well I mean there is nothing more central in our experience than  the 
up and down. 
Noyes :  The current empirical situation with regard to absolute rest and uniform 
motion has changed. There is now no doubt that  we are moving at something 
like 600 kilometers per second with respect to the cosmic background radiation. 
Galilean invariance is in contradiction with experience. 
S u p p e s :  I am very happy with that.  
Noyes :  This  empirical fact does not, in principle, require one to look outside of 
a closed laboratory. If  one measures the temperatures  of the walls of an isolated 
laboratory, the side moving into the background radiation will be hotter,  and 
the side moving away from it will be colder. 
S u p p e s :  Furthermore, if we look at the perceptual  geometry for humans and 
animals, there is a general difference between horizontal and vertical. And then if 
you stay in the horizontal plane - in human perception and in animal perception 
- there is a fantastically strong effect for shortening along the depth axis as 
opposed to the frontal axis. This is confirmed in a variety of experiments. So, 
pick your geometry for whatever your problem is. 
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1 I n t r o d u c t i o n  

The issues I want to address in this paper arise from the following question: 
What  can one infer, if anything, about the degree of dynamical instability of a 
system from the unpredictability of its behavior over time? In a previous paper, 
"Defining Chaos" Batterman (1993) I argued that  really one can infer very 
little. The  claim there was that  even the most regular of dynamical systems can 
yield behavior that  is completely unpredictable in the well-defined sense that  the 
observed sequence of measurement results is algorithmically complex and hence, 
random. Very roughly the idea is that  the quantity one might choose to measure 
might be so unnatural  to the system that  the randomness in the sequence of 
its values and hence, the unpredictability of its future behavior, would tell us 
nothing about  the rate of spreading of nearby trajectories in the system's phase 
space. The  phase space of a system is the space defined by a set of variables such 
that  values for them suffice to uniquely specify the system's state. A t ra jec tory  in 
such a space represents the evolution of the system's state over time. Quantities 
tha t  are natural to the system must be related in an appropriate way to the 
system's state variables. 

I argued in "Defining Chaos" that  paying attention solely to the output of a 
system, ignoring the genesis of that  output, can lead to the mistaken inference 
that  the generating system is sensitively dependent on initial conditions when, 
in fact, it is not. This claim was supported by a particular example. I claimed 
that  a roulette wheel or wheel of fortune can be seen to yield algorithmically 
random output  sequences; yet, despite this the roulette whee] is, relative to its 
natural  set of state variables, the most regular system imaginable. Its phase space 
trajectories are not in the least sensitively dependent on initial conditions. I still 
believe tha t  the main claim of the earlier paper is correct; though for interesting 
technical reasons, I am no longer convinced that  the example I gave supports it 
in the strongest possible way. I intend here to improve on my earlier discussion by 
first re-examining and reformulating the earlier example, and then by providing a 
new, though similar, example which directly supports the claim. This discussion 
will lead, I believe, to some further interesting results concerning the connection 

* I would especially like to thank Homer White and Mark Wilson for many helpful 
discussions about these issues. 
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between unpredictability understood in terms of algorithmic complexity and 
chaos understood in terms of sensitive dependence on initial conditions. 

The motivation for the paper "Defining Chaos" was J. Ford's claim that  "in 
its strictest technical sense, chaos is merely a synonym for randomness as the 
algorithmic complexity theory of Andrei Kolmogorov, Gregory Chaitin, and Ray 
Solomonoff so clearly reveals." Ford (1989), p. 350 Concerning accounts of chaos 
that  take exponentially sensitive dependence as the key definiens, Ford has said 
the following: 

A working definition of classical chaos which now appears in the lit- 
erature with increasing frequency involves the notion of exponentially 
sensitive dependence of final system state upon initial s ta te--e ,  g., pos- 
itive Lyapunov numbers or the like. This is in fact an excellent working 
definition, but why is attention so sharply focused upon exponential 
sensitivity? . . .  The answer is revealing. Simple exponential sensitivity 
is precisely the point at which, in order to maintain constant calcula- 
tional accuracy, we must input about as much information as we get out 
of our calculations . . . .  But even more important,  it is the point at which 
algorithmic complexity theory asserts that  our deterministic algorithms 
are trying to compute variables which, in fact, are mathematically ran- 
dom. With this additional insight, it becomes sensible to subsume the 
above working definition of classical chaos under the most general possi- 
ble theoretical definition: Chaos means deterministic randomness. Ford 
(1988), pp. 130-131 

Ford's claim is, in fact, quite strong. He holds that  " . . .  exponential error 
growth, or the like, is completely equivalent to deterministic randomness; which 
definition one uses is a mat ter  of choice." Ford et al. (1991), p. 510 While the 
above argument (in terms of calculational accuracy) is meant to forge "intu- 
itively" the connection between the "conventional definition of chaos" as sensi- 
tive dependence and algorithmic randomness, Ford et al. note further that  " . . .  it 
is comforting to know that  Alekseev, Yakobson, and Brudno have rigorously con- 
firmed that  'sensitive dependence' and 'deterministic randomness' are but  two 
sides of the same coin." Ford et al. (1991), p. 510 

The next section will provide a explication of the theorems appealed to in 
the claim that  sensitive dependence and deterministic randomness are equivalent 
notions. In the third section, I will discuss in detail the example of the roulette 
wheel. The example will be reformulated in a way which avoids an unclarity 
in the earlier presentation and which, furthermore, indicates tha t  the nature of 
the connections between sensitive dependence and algorithmically complexity 
are best framed in terms of a concept of conditional algorithmic complexity. 
This notion differs from the concept of absolute complexity which appears in 
the theorems. Section 4 will offer another example; one which I believe calls 
directly into question the validity of inferring from algorithmic randomness to 
sensitive dependence on initial conditions. It is an example that  is very familiar 
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to workers on chaos, tha t  of the delta kicked rotor. I will t ry  to present it in a 
different light. 

2 The  Theorems  of B r u d n o - W h i t e  and Pes in  

The theorem which according to Ford proves the equivalence of the two "def- 
initions" of chaos is due to A. A. Brudno Brudno (1983) and has recently 
been strengthened by Homer White (1993). Let (X ,T)  be a compact dynam- 
ical system, where X is a compact metrizable space and T : X -4 X is a 
homeomorphism (a continuous mapping with a continuous inverse). The theo- 
rem relates the complexity of an orbit of a point x c X under T to the met- 
ric entropy of the transformation. The orbit of x under T is the bi-infinite se- 
quence of p o i n t s . . .  T-2x,  T - i x ,  x, Tx, T2x, T3x . . . .  That  is, it is the sequence 
< TJx : j C Z >. Roughly construed, the theorem states that  for almost all 
points x C X,  the algorithmic complexity of the orbit equals the metric entropy. 
I will first discuss the entropy of the transformation T and then talk about  the 
other quan t i ty - - the  algorithmic complexity of the point x E X. It is perhaps eas- 
iest to understand these quantities by reference to examples. Let us first consider 
the so-called Baker's transformation. 

This is a transformation T of the unit square X = (0 _< q < 1; 0 < p < 1) to 
itself defined as follows: 

T(q,p) = { (2q, p/2) if 0 < q < 1/2 
( 2 q - l , p / 2 + 1 / 2 )  if 1 / 2 < q < 1  

The transformation can best be visualized as the composition of two succes- 
sive operations. The first squeezes the square to half its height and stretches it to 
twice its length. The second cuts this new rectangle in half and stacks the right 
half upon the left half. Figure 1 illustrates this for the half square 0 < p < 1/2. 

T 

1 

v 

0 l 0 2 0 1 

Fig. 1. The Baker's Transformation 

The definition of hu (T), the entropy of the transformation T or metric entropy, 
can be understood by first defining the entropy of a partition ~ of the space X,  
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h(a), and then defining the entropy of the transformation T with respect to the 
partition a; namely, h(a ,  T). 

Let a = {A0, A1} be a parti t ion of the square X into its left half and its 
right half. (A parti t ion of a space X is an ordered finite collection of disjoint 
sets of positive measure whose union is, up to sets of measure zero, all of X. )  
See figure 2. 

AO A1 

0 1 

Fig. 2. The Partition a 

The  entropy of the partition a = {Ao, A1} is simply defined as follows: 

1 

h(a) = - ~ #(Ai) log #(Ai) 
i = 0  

This is a measure of our uncertainty as to where the point x E X is relative to 
the parti t ion a.  Clearly if #(Ao) = #(A1) = 1/2, h(a) is maximal. 

Now, T(a) is also a parti t ion of X; namely, T(a) = {T(Ao), T(A1)}. Likewise, 
T2(a) = T(T(a)) = {T2(Ao),T2(A1)} is also a partition. They are shown in 
figure 3. 

In general, if/3 = {B 1 , . . . ,  Bn} and V = {C1 , . . . ,  Cm} are two partit ions, their 
join ~ V V  = {BiNCj  : i = 1 , . . . , n ; j  = 1 , . . . , m }  is also a partition. If /3 and V 
are two partitions, V is a refinement of/3 (V ~/3)  if each Cj E V is, up to a set 
of measure zero, a subset of some Bi c ~. Therefore, the parti t ion ~ V V is the 
least common refinement of both  part i t ions/3 and V- 

Now given the parti t ion a = {Ao,A1}, the following holds: If  TJx E A~(i -- 
0, 1) for some x E X,  then x E T-J(Ai).  Suppose we have the sequence of O's 
and l ' s ,  < j~ > corresponding to which set Ai the point x is in at  the j th  
i teration o f T  for j = 0 , . . . , j  - n -  1, then 

x C Ao~ M T-1A1, N T-2A2~ A . . .  A T-n+lA(n_l)~ 
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T(A1) 

T(A0) 

~ T2(A1) 

T2(A 0) 

Fig. 3. The Partitions T(a) and T2(a) 

n - - 1  _ "  
In other words, the partition of which this set is a member, Vj=o T 3a, codes 
the first n places of the orbit of points x E X. In this way, relative to a finite 
partition, every orbit can be coded by a bi-infinite sequence of numbers from a 
finite alphabet (in this case: 0, 1). 

The entropy of the transformation T with respect to the partition c~, hu(c~ , T) 
can now be defined in terms of this entropy of a partition as follows: 

h u ( a , T ) =  lim l h ( a v T - l a v . . . V T - ~ + l a )  
n - - *  o o  n 

This limit exists and h~(a, T) is a measure of the average uncertainty per unit 
time about which element of the partition a the iterate of the point x will enter 
in the next instant of time given its past history relative to a. If the partition 
a is silly (suppose it contains a single set of measure one), then there won't be 
much (in fact, zero) uncertainty about which element of c~, TJx will be in for 
each j .  (It will always be in that  set.) This motivates us to define, finally, the 
entropy of the transformation T, h~(T) as follows: 

hu(T ) = sup hu(c~, T) 
a l la  

The supremum is over all partitions of X. This is known as the metric or KS 
entropy. 

This number, hg(T), is a measure of our average uncertainty about where the 
transformation T will move the points of the space X. The greater hg(T), the 
more T "disorganizes" the space. (See Peterson (1983), Chapter 5 for a discus- 
sion of entropy.) Since we care about the nature of predictability of the system, we 
can and should think of a partition c~ of X as representing possible measurement 
outcomes on a system. On this way of thinking, h(c~) is "a measure of our (ex- 
pected) uncertainty about the outcome of the experiment or equivalently of the 
amount of information that  is gained by performing the experiment."Peterson 
(1983), p. 234 Then hu(~, T) measures the time average of the information con- 
tent of the measurement represented by the partition a. Finally, hu(T) is "the 
maximum information per repetition that  can be obtained from any experiment, 
so long as T is used to advance the time (i.e., to develop the system)."Peterson 
(1983), p. 234 
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Let us now discuss the other quanti ty appearing in the Brudno-White  theo- 
rem; namely, the algorithmic complexity of a point x E X. This notion depends 
only on T and the topology of X.  In particular it does not depend on the metric 
or even the metrizability of the space X.  Let V = {U0, . . . ,  Un-1} be any finite 
open cover of X.  Unlike a partition, the sets in V may intersect one another. 
We want  to use the elements of V to code the orbits of points in X.  Define for 
x E X  

Cv(x) = {w E { 0 , 1 , . . . , N -  1 } z :  for all n E Z ,T~(x )  E Uo~(n) 

The set {0, 1 , . . . ,  N - 1} z is the set of all two-way infinite sequences containing 
numbers from the alphabet  of the N "letters" 0, 1 , . . . ,  N - 1. A two-way infinite 
sequence w, whose entries come from this alphabet  is a member  of Cv(x)  if and 
only if the n th place of w, w(n) is the subscript of an open set in V to which Tn(x)  
belongs. Thus, Cy (x) is the set of all codings of the orbit of x with respect to the 
open cover V. For example, suppose w . . . .  0211402.. .  E Cy(X) with w(0) = 
0, w(1) = 2, w(2) = 1, w(3) = 1, etc. Then we have 

x E Uo n T-I(U2) A T-2(U1) D T-3(U1) A T-4(U4) M T-5(Vo) M T-6(U2)  

Since the open sets in V can intersect, there may be many different codings of 
the same point. Tha t  is, the set Cv(x) may contain many members.  

Let w n denote the finite sequence w ( 0 ) w ( 1 ) . . . w ( n -  1); namely, the first 
n places of w. Let l(s) denote the length of any finite sequence s. (Therefore, 
l(w n) = n.) Now let C be any fixed universal Turing Machine. This is a machine 
tha t  can simulate any specified Turing machine given any input. The  number,  
Kc(s ) ,  where s is a finite sequence, is the complexity of s relative to the universal 
machine C. I t  is defined to be the length of the shortest sequence s*, l(s*) such 
tha t  C(s*) = s. (See White  (1993) and references therein for details.) We want 
a definition of complexity for infinite sequences. This can be done as follows: 
Define 1: 

Kc(  
sup -K(x, T, V) = lira sup min 

n~oo ~ECv(x) n 

and 
Kc(  

inf - K ( x ,  T, V) = lira inf rain 
n~oo weCv(z) n 

These definitions need some explanation. Suppose w n codes the first n places of 
the orbit  of x E X relative to the open cover V. Since the open sets Ui in V may 
overlap, for w ~ E Cv(x),  one has w '~ as a different coding of the first n places 
of x relative to V. We want to choose the coding sequence with the minimum 
algorithmic complexity. This is why the "lira sup" and "lira inf" are taken with 
respect to that  coding of x ' s  orbit  with the least complexity. The motivation for 
this is the following. Consider figure 4. 

1 The notation here is slightly different than that used in White (1993) 
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i I / 

Fig. 4. Open Cover of X 

Suppose x is a fixed point of the transformation T; i.e., Tx = x. And, suppose 
x lies in the intersection of two open sets U0, [/2, both  members  of V. Then the 
following are possible codings of the orbit of x under T relative to V. 

. . .  0000000000... (1) 

. . .2002022202.. .  (2) 

. . .2222222222.. .  (3) 

(1) and (3) are obviously simple. They have zero algorithmic complexity. But  
(2) might be very complex. I t  is reasonable to choose a simplest coding (both 
(1) and (3) are equally simple), since a fixed point of a t ransformation has a 
simple orbit. Therefore, the supremum and infimum complexities of x given T 
relative to the open cover V chooses the coding with the smallest algorithmic 
complexity. Note also tha t  in taking the limit n --* oo, there is no longer any 
dependence on a particular universal Turing machine C. 

But,  neither sup -K(x ,  T, V) nor inf -K(x ,  T, V) will suffice as the definition 
of complexity of an orbit  of a point in X under T, for basically the same reason 
tha t  h~(a,  T)  is not good enough to represent the metric entropy of the transfor- 
mat ion T: I t  is no good to look at a single partition or a single open cover. If  the 
open cover is sufficiently "rough", then an orbit  which is intuitively very com- 
plex might remain within a single set Ui of V. Its  coding sequence would then 
simply be . . .  iiii . . . ,  and it would have sup -K(x ,  T, V) = inf -K(x ,  T, V) = O. 
Therefore, we need to look at all open covers. We get the following definitions: 

sup -K(x ,  T) = sup sup -K(x ,  T, V) 
a U V  

and 
inf -K(x ,  T) = sup inf -K(x ,  T, V) 

a l l V  
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Finally, we can state the relevant theorems. Brudno (1983) proved the fol- 
lowing: 

Let (X, T, #) be a dynamical system, with # an ergodic T-invariant Borel 
probability measure on X. Then, for it-almost every x E X, 

sup - g ( x ,  T) = h~(T) 

White strengthened the result to say the following: 

For (X, T, it) as above, inf - K ( x ,  T) = sup - K ( x ,  T) = h~,(T) White (1993), p. 812 

This theorem 

is a statement about the limiting algorithmic complexity of orbits of 
points in measure preserving systems: the (measure-theoretically) typi- 
cal orbit possesses a limiting degree of complexity with its per-element 
unpredictability being equal, in the long run, to the entropy of the sys- 
tem. (White (1993), p. 812) 

Now, this result, by itself, is not sufficient to allow one to forge a connec- 
tion between the algorithmic complexity of the typical orbit of a system and 
a claim that  the system exhibits exponentially sensitive dependence on initial 
conditions. What  is needed is a further result connecting the metric entropy of 
a transformation T with exponential spreading of trajectories in phase space. 
The relevant theorem is due to Pesin (1977). A statement of the theorem is the 
following: 

Let (X, T, #) be a C2-dynamical system. That is, X is a smooth compact 
manifold, T is a C2-diffeomorphism on X (a mapping such that  T and 
T-1 are both twice differentiable) and it is a measure on X compatible 
with the manifold structure of X and preserved by T. For each x E X,  
let S(x) be the sum of the positive Lyapunov exponents of x, then 

x S(X)dit(x) = ht,(T ) 

The Lyapunov exponents of a trajectory characterize the mean exponential rate 
of divergence of its nearby trajectories. Thus, Pesin's theorem connects the ex- 
ponential separation of nearby trajectories (the sensitive dependence on initial 
conditions) with the metric entropy of the transformation T as defined above. 

If we combine the Brudno-White theorem with Pesin's theorem, then Ford's 
account of chaos as a synonym for algorithmic complexity which subsumes the 
"sensitive dependence" account appears to be well-founded. But, before dis- 
cussing the roulette wheel example in section 3 and how it fares in light of this 
fairly in-depth presentation of these two theorems, it is important to note a 
difference in the conditions of the two theorems. 

Pesin's theorem requires that  the dynamical system be a diffeomorphism on 
a smooth compact manifold. The Brudno-White result demands considerably 
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less, and consequently applies to a much wider class of dynamical systems: The 
connection between the algorithmic complexity of a point and the metric en- 
t ropy holds for any homeomorphism on a metrizable space. If we are interested 
in Hamiltonian systems, then of course, the stronger conditions are satisfied and 
the chain of equivalences relating with probability one, positive algorithmic com- 
plexity to positive Lyapunov exponents can be maintained. Yet, it is interesting 
to note that  there are weaker notions of the "spreading of trajectories" in a space 
X than that  of having positive Lyapunov exponents. 

For example, there is a quantity h~(x,T), called the local "entropy" of a 
transformation about a point, due to Brin and Katok (1983). It  provides a reason- 
able notion of the separation of orbits of nearby points under a transformation T 
in a space X.  Here T need only be continuous with a continuous inverse preserv- 
ing a Borel probability measure #, and X a compact metric space. They  prove a 
theorem relating the average exponential spreading of the orbits of nearby initial 
points as measured by the local entropy h~(x,T) to the usual metric entropy 
h~(T). Therefore, for a large class of nondifferentiable dynamical systems, one 
can still forge a connection between the complexity of a typical single orbit and 
a form of dynamical instability. For differentiable dynamical systems, the aver- 
age local entropy for all points x E X is equivalent to f x  S(x)dtt(x)and so, by 
Pesin's theorem it is also equivalent to the metric entropy h~(T). 

3 T h e  R o u l e t t e  W h e e l  R e v i s i t e d  

In "Defining Chaos" (Batterman (1993)) I argued that the positive algorithmic 
complexity of an observed output  sequence of a system does not necessarily 
imply that  the system exhibits exponentially sensitive dependence on initial 
conditions. The basic idea was that  looking at a system in the "wrong" way could 
yield the wrong answer. I tried to describe a way of looking at a rotating wheel 
(a roulette wheel or wheel of fortune), which should clearly count as a system 
not sensitively dependent on initial conditions, such that  the observed output  is 
algorithmically random. That  is, I tried to characterize a "wrong" way of looking 
at it. However, to readers familiar with the Brudno-White results, my discussion 
seemed misleading since as I characterized the wheel, it is not a proper dynamical 
system. In this section I will first present the example as I characterized it in 
"Defining Chaos" and then reformulate it as a proper, albeit abstract,  dynamical 
system. I will then discuss how the ergodic theorems discussed in the last section 
apply to the reformulated example. 

The  wheel example goes as follows: Imagine two black-boxes; the first con- 
tains an ideal hard sphere gas, the second contains a roulette wheel or wheel 
of fortune with a person to spin the wheel. Suppose also that  in the first box a 
device performs measurements at unit time intervals on the ideal gas. Since, as 
we have seen in section 2, a partition c~ -- {Ai : i = 0, 1 , . . . ,  N - 1} of the phase 
space can be thought of as representing possible measurement outcomes, we have 
the box print out the number i corresponding to which cell of the parti t ion the 
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system's representative point is to be found at each interval of time. For the 
ideal gas trajectories from nearby initial states separate exponentially in time, 
the entropy is positive, and the typical orbit sequence will be algorithmically 
random (will have positive algorithmic complexity). 

Nearby initial conditions 

Fig. 5. Phase Space of a Conservative Wheel 

The other black-box contains an N-space roulette wheel (imagine the circum- 
ference marked off in N equal segments labeled: B0, B1,..., BN-1). The wheel is 
spun once per unit time and the box prints out the number of the space opposite 
a pointer at the end of that time interval. Just as with the ideal gas box, we will 
be looking at a sequence of numbers from the alphabet {0, 1 , . . . ,  N - 1}. Since 
roulette wheels are taken to be paradigm examples of the most "random" sys- 
tems (they generate Bernoulli sequences with probability one), we expect that 
sequences arising from the pointer "measurements" will be algorithmically com- 
plex. By the Brudno-White theorem we expect that the wheel dynamical system 
has positive entropy and so by Pesin's theorem, nearby initial conditions will 
yield exponentially separating trajectories. 

In "Defining Chaos" I argued that while the chain of equivalences holds for 
the ideal gas system, it breaks down for the roulette wheel. My reasoning de~ 
pended on noting a qualitative difference in the allowed possible dynamical evo- 
lutions of the systems in the two boxes. The ideal gas is a nonintegrable ergodic 
system whose phase space trajectories are free to wander throughout the entire 
6N - 1 dimensional energy surface of its phase space. As noted, these trajec- 
tories typically exhibit exponentially sensitive dependence on initial conditions. 
On the other hand, the phase space of an "ideal" roulette wheel is a cylinder 
with coordinates 0, the angular position of the wheel, and Pe, the wheel's angular 
momentum. See figure 5. If the wheel experiences no friction then for given Pe 
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the trajectory is just a circle around the cylinder. Two initial points that  are 
nearby in this space can never separate exponentially in time. In fact, the motion 
is clearly integrable. If we allow for dissipation (so that  the wheel is no longer 
conservative, say because it is clicking against a pointer), the trajectories will be 
spirals from some initial point (~,Pe) to some final rest state (~r, 0). See figure 6. 
Clearly this situation also will not allow for any exponentially sensitive depen- 
dence on initial conditions. (There are no strange attractors in this dissipative 
system.) 

Fig. 6. Phase Space of a Dissipative Wheel 

Prima facie, then it appears as if the chain of probability one equivalences-  
(positive algorithmic complexity) ~-* (positive metric entropy) ~-* (positive Lya- 
punov exponents) fails for this system. If the Brudno-White theorem holds, then 
because the output of the box is algorithmically random, the system must have 
positive metric entropy. But, since no trajectory has a positive Lyapunov expo- 
nent, the link between complexity and sensitive dependence fails. 

This conclusion, however, is too hasty. A deeper analysis reveals that  the 
roulette wheel as I have characterized it is really not even a dynamical system. 
Actually, I noted this fact as a potential objection to the example in "Defining 
Chaos". 

[The system] does not really evolve continuously from some one initial 
state as, for example, the hard sphere gas does. Here in order to get 
the random output sequence, we need the person who keeps restarting 
the wheel over and over again in slightly different initial states . . . .  (T)he 
output is random because of the (dynamically speaking) artificiality of 
the way the sequence is constructed. Batterman (1993), pp. 63-64 
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But I dismissed this as really no objection at all. My point was tha t  the Hamil- 
tonian motion of the wheel is stable so the randomness in output  must  be due 
to something other than the dynamics--namely ,  to our ignorance of the exact 
initial conditions for each spin. In other words, the randomness in the output  
of the wheel is due to the fact tha t  the wheel is linked to an external source of 
randomness; in particular, the vagaries of the person spinning the wheel. Indeed, 
this is just  the way real wheels of fortune and roulette wheels do yield apparent ly  
random outputs. 

In fact, I now believe tha t  the objection cannot be dismissed quite so easily. 
The main issue, of course, is whether for a deterministic dynamical system it is 
possible to infer from randomness in the output  sequence to a sensitive depen- 
dence on initial conditions in the dynamics. But  the roulette wheel as I have 
characterized it is not a deterministic system. I t  is not a deterministic system 
because its s tate at the end of each interval does not uniquely determine its 
s ta te  for the next or any other interval. The problem is tha t  the person inside 
spins the wheel according to her whim; tha t  is, according to no deterministic 
rule. The "system" as I have described it, is indeterministic or stochastic, and 
no one should be terribly surprised tha t  an independent stochastic process can 
yield sequences tha t  are algorithmically random. But for such a nondetermin- 
istic system, the Brudno-White  theorem does not apply because no relevant 
t ransformation is defined for it. 

Now the question is what  we can learn from the wheel, if we formulate it 
as a proper, tha t  is, as a deterministic dynamical  system. I will concentrate on 
this question for the rest of this section. Then in the next section, I will consider 
a different, though similar, example which will directly support  the claim tha t  
ignoring the genesis of the sequential output  of a dynamical system which has 
positive complexity can lead one to mistakenly infer tha t  the system is sensitively 
dependent on initial conditions. 

One can formulate the roulette wheel as an abstract  (non-Hamiltonian) dy- 
namical system as follows 2: The basic idea is to consider the combination "wheel- 
plus-spinner" as the system of interest, and not just the wheel as I did earlier. 
To do this precisely, let us identify the wheel with the unit circle S 1 in N2. As 
in figures 5 and 6, we use the angle 0 to represent positions on the wheel. Let  
A = <  ,~0, ,~1, A2, ,~3,- �9 �9 > be a sequence in the space of sequences A ~ - - t h e  set 
of all one-way infinite sequences of O's and l 's .  Tha t  is, for each i, Ai -- 0 or 1. 
The O's and 1's will tell us how much angular ve loci ty /momentum the wheel 
gets at the beginning of each t ime interval. 3 Thus, the sequence A is our rep- 
resentation of the spinner. The dynamical  system (X, T) is defined as follows: 
Let X = {(0, ,~) : 0 E [0, 2~r) and ,~ E A~176 X is the Cartesian product  of 
the interval X2 = [0, 27r) C N with the space of sequences A ~176 X = f2 x A ~176 
Then X represents all possible positions of the wheel together with all possible 

2 Here, as in numerous other places, I am deeply indebted to Homer White 
3 We consider only one-way infinite sequences since we are, for simpicity, only con- 

cerned with predicting values of the wheel. 
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future spins of the wheel in the following sense: We let the wheel receive angular 
momentum P0, at the beginning of the n th time interval if the n th number in 
the sequence A, An-z, equals 0 and let it receive angular momentum Pl in tha t  
interval if An-1 -- 1. Define T : X ~ X as follows: 

r(o0, < ,~0, )~1, )~2, )~3, �9 �9 �9 > )  = ( 0 1 ,  < ~ 1 ,  ~ 2 ,  )~3, �9 �9 �9 > )  

where 00 is the wheel's initial position, and 01 is the wheel's position at the end 
of the first t ime interval when it receives angular momentum Pi at the beginning 
of the interval (Pi = Po if A0 = 0 and Pi = Pl if A0 = 1). Note that  the new 
value for A is just the next value in the sequence. (Note also that  the new 0 
value is determined by the completely integrable Hamiltonian motion of the 
wheel between spins.) It is easy to construct an ergodic T-invariant measure # 
on X from the uniform Lebesque measure on the interval ~2 = [0, 2~r) and the 
"fair coin," Bernoulli measure on the space A ~ .  The picture is essentially tha t  of 
figure 5 again. (Actually, it is really just the two disconnected circles in figure 7.) 

P0 

f 

p0 

Fig. 7. The "Wheel-plus-Spinner" 

Since #-almost all sequences A have positive algorithmic complexity ( they are 
almost all random sequences of O's and l 's), the sequence of position values (the 
numbers tha t  the black-box will output)  will also be algorithmically random. 
Thus, we have that  for #-almost all x E X ,  K ( x ,  T) > 0, and so by the Brudno- 
White theorem, h~(T)  > 0. This, of course, agrees with the result for the black 
box containing the ideal gas. 

Yet there still seems to be an intuitive difference in the chaotic nature of 
the gas and the wheel-plus-spinner, in that  the latter has a component of its 
evolution (the wheel) that  is not sensitively dependent on initial conditions. 
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The  sequence of 0-values, inherits its randomness through the coupling with the 
other variable A, and not as a result of any instability of motion. In the gas, 
of course, the algorithmic complexity of the measurement sequence is the result 
of instability. We can, I believe, use the theory of algorithmic complexity to 
formalize this intuitive difference. 

The  first thing to notice is tha t  we are really only interested in inferring from 
the unpredictabi l i ty/complexity of the sequence of positions, the 0-values, to 
the nature  of the instability of the dynamics. In other word, our "measurement  
data"  is just  the sequence < 80, ~1, . . .  >; we have no information whatsoever 
about  the conjugate "variable" ~. So, the complexity we are interested in is not 
really the full complexity of a point x E X relative to the t ransformation T, 
but  instead, what  might be called the "restricted algorithmic complexity of x 
relative to T" - - r e s t r i c t ed  to a sequence of numbers from the space $2. I t  is, in 
fact, possible to define the $2-restricted complexity of a point x E X using "$2- 
only" open covers of X.  4 These are open covers that  can be used to code points 
x of X ,  but by looking only at their $2-components, not their A~176 
In a similar vein, one can define the $2-restricted metric entropy and a restricted 
notion of local entropy to measure the spreading in t ime of $2-only orbits given 
two points in X with $2-components nearby according to the metric on $2. 

Let us now see how our two black boxes compare with one another. I think 
tha t  there still remains an interesting difference between the wheel as character- 
ized above and the ideal gas. Consider first the ideal gas of N molecules. The  
s ta te  of each gas molecule is completely specified by providing six numbers: three 
position coordinates x, y, z and three momentum coordinates pz, py, Pz. Suppose 
tha t  for some reason we are only interested in the x-values for the i th molecule. 
We can think of the full phase space as the Cartesian product ~ • ~6n-1 of the 
space of the variable of interest (call it x i )  and the space of the remaining s ta te  
variables. Suppose (and admit tedly this requires some stretching of our imagi- 
nations) we have a device tha t  will measure the values of the x-coordinate for 
the i th molecule of the gas. Suppose further (and admittedly, this demands even 
more of a stretch) tha t  we have exact knowledge of the other five coordinates 
for the i th molecule as well as exact knowledge of the position and momen tum 
coordinates for every other molecule of the gas. In other words, we know all 
there is to know about  every molecule of the gas except for the x-coordinate of 
the i th molecule, the xi-coordinate. Equivalently, we know the point in ~6N-1.  
Now, at  unit intervals of t ime our measuring device gives us a value for the 
xi-coordinate.  Because of the instability of the gas, and because of the fact tha t  
the typical orbit of a point on the energy surface is algorithmically complex, it 
is reasonable to expect tha t  the restricted xi-orbit sequence is algorithmically 
complex- - i t  has positive ~-restr icted algorithmic complexity. 

Now, consider two gases (or two states of the same gas) tha t  agree on all the 
other values but differ in their xi-coordinates. Let their xi  coordinates be close to 
one another in the s tandard Euclidean metric on ~. The trajectories from these 

a These definitions are due to Homer White; private communication. 
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nearby initial conditions will diverge exponentially on the full energy surface. 
As a result of this spreading, it seems reasonable to expect tha t  there will be 
positive xi-restricted local entropy: The xi-only orbits will diverge exponential ly 
with time. We can conclude the following for the ideal gas: 

If  the sequence of measured values of a variable of interest is algorithmi- 
cally complex, then it is likely (with probabili ty one) that  the dynamics 
exhibits exponentially sensitive dependence on initial conditions, even if 
we are given absolute knowledge of all other relevant state variables. 

Now let us ask a similar question about the roulette wheel. For this system, 
as we have seen, the sequence of 8-values is algorithmically complex. Suppose 
we are given absolute knowledge of the variable "conjugate" to the variable of 
interest. T h a t  is, suppose we have absolute knowledge of the sequence A. (This is 
analogous to the knowledge of exact values for all variables except xi in the gas 
example.) Consider two initial conditions (81, ,~) and (~72, A) such tha t  81 and 82 
are close in a s tandard metric d(.,-) on ~;  say d(81,82) -- e. I t  is clear tha t  the 
~2-only orbits from these initial conditions will have zero restricted local entropy. 
In fact, for any j ,  d(TJS1, TJ82) = e. Thus, for the wheel we can conclude the 
following: 

There  is no separation in J2 and no sensitive dependence on initial con- 
ditions i f  we are given absolute knowledge of the other relevant state 
variable )~. 

I t  seems to me that  the difference between these two cases is best understood 
in te rms of the conditional algorithmic complexity of the respective sequences of 
variables of interest. The absolute complexity of any sequence was defined above 
in section 1. Intuitively, it is a measure of the length of the shortest  program 
which when input to a universal ~-hring machine will output  the sequence in 
question. As we saw, there is a natural  way to associate a point x E X with 
a coding of its orbit  under T. Determining the orbit complexity then involves 
looking at all possible codings of the orbit. 

The  conditional complexity of a finite sequence s given a sequence t can 
be understood as follows: As before let s and t be finite sequences from some 
alphabet ,  e.g. {0, 1}. Consider a universal Turing machine C which in addition 
to its two-way infinite work tape  also has a read only tape  on which a finite 
sequence can be recorded. Define the conditional complexity of s given t to be 
the length of the shortest string s* from the set of finite sequences of O's and 
l ' s  such tha t  given input s* (on its work tape) the machine C will ou tput  the 
sequence s when it has the sequence t on its read only tape. We can write this 
as follows: Ke(s l t  ) = l(s*). I f a  = {A0, . . .  , A ~ - I }  and 13 = {B0, . . .  , B i n - l }  are 
two parti t ions of X (say a is a partition corresponding to the variable we want 
to measure and fl is a parti t ion of the remaining variables), define r  and 
Ca(x) as follows: 

r  is tha t  element ~o of the set of infinite sequences from the a lphabet  
{0, 1 , . . . ,  n -  1} such tha t  for all j > O, TJ(x)  E A~(j). Recall tha t  cv(j) is 
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that  number from {0, 1 , . . . ,  n -  1} found at the jth place in the sequence 
03 .  

r  is defined in a like manner: 

r is that  element A of the set of infinite sequences from the alphabet 
{0 ,1 , . . .  , m -  1} such that  for all j >_ O, TJ(x) E B~,(j). 

Thus, 02 = r is the coding of the orbit of x with respect to the partit ion (x 
of X,  and A codes the orbit of x with respect to the partit ion fl of X.  (In the 
following, "(r n'' denotes the first n places of the sequence r similarly 
for "(r Then, 

n) 
sup -K(x,  T, a[/3) = lim sup 

r t - -+r  n 

and 
inf -K(x,  T, al~ ) = lim inf Kc ((r (x))'~l(r n) 

n- - -*oo  n 

For example, the sup -K(x,  T, all3 ) provides an upper limit on how complex the 
orbit of x looks, relative to the partit ion (~, given tha t  one knows the orbit of x 
relative to ft. Once again in taking the limit, the dependence on any particular 
universal Turing machine is eliminated. 

Now let, < an > and < fin > be increasing sequences of partitions. This 
means that  the partition ai+l _> ai  (ai+l is a refinement of ai)  and similarly for 
the fin's. Let 9r be the sigma-algebra of sets generated by the sequence < a ,  >, 
and let G be the sigma-algebra generated by the sequence < Pn >. For any 
part i t ion 7 define: 

sup -K(x,  T, Yl6) = lim sup -K(x,  T, "/l~n) 

and finally, define: 

sup -K(x,  T, ~-]G) = lim sup -g (x ,  T, alG ) 
n ~ O O  

Similarly, one gets definitions for i n f - K ( x , T ,  71G ) and i n f - K ( x ,  T,.TIG ). 
The idea behind all of this is the following: Let the sequences of partitions 
< an  > and < ft,  > generate the sigma-algebras 9 v and G respectively. Suppose 
furthermore that  the sequence of partitions < anVfln > generates the full sigma- 
algebra of sets of the space X. Consider the ideal gas example. If a is a parti t ion 
of the space ~ of the variable of interest, xi, and fl partitions the space ~6N-1 
of the remaining variables, then sup -K(x,  T, .TzlG) measures the complexity of 
the sequence of xi values if we are given the sequence of future values of the 
remaining variables to as great a degree of accuracy as we would like. Similarly, 
in the case of the roulette wheel we would have a be a partit ion of the space 
~2 and fl be a partition of the space of sequences A ~ .  Then sup -K(x,  T, 9riG) 
measures the complexity of the sequence of 0-values given full knowledge of the 
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sequence ~ defining the future spin history of the wheel. It turns out that the 
conditional complexity of the sequence of xi-values for the ideal gas is positive, 
but the conditional complexity of the O-values for the wheel is zero. Therefore, it 
appears tha t  the notion of conditional complexity is better  suited for describing 
the difference between the two systems, than is the notion of the absolute com- 
plexity of the sequence. Homer White has proved a theorem to the effect tha t  if a 
dynamical system exhibits positive conditional complexity in a variable of inter- 
est (say xi or 0) given future values of the "conjugate" quantities as accurately 
as one would like, then that system will exhibit a very strong form of restricted 
instability in the variable of interest. 5 In fact, the instability implies positive 
restricted local entropy, so positive conditional complexity entails exponentially 
sensitive dependence on initial conditions in the variable of interest. 

Conditional algorithmic complexity is an appropriate concept for exhibit- 
ing the connections between the unpredictability of a system as evidenced by 
the high complexity of measured values, and chaos in the sense of sensitive de- 
pendence on initial conditions. It is more appropriate than absolute complexity, 
since if we had only considered the absolute complexity of the measured sequence 
of 0-values on the wheel we would be unable to explain the difference in local 
spreading of orbits given absolute knowledge of the other variables noted above 
between the roulette wheel and the ideal gas. 

Now, it seems to me that  the proper explanation for the difference noted 
between these two systems, the evidence for which is manifest in terms of con- 
ditional complexity, is the following. The wheel-plus-spinner has a component 
which is a regular, integrable Hamiltonian system; namely, the wheel. The abso- 
lute positive complexity of the 0-sequence, in effect ignores the perfectly regular 
evolution of the wheel between spins. There is, however, no analog to this "reg- 
ular" evolution in the variable of interest, xi, of the ideal gas. Despite all of 
this effort above to support the connection between absolute complexity and 
sensitive dependence on initial conditions, in the next section I would like to 
discuss another example which I believe clearly demonstrates that  one must be 
very careful in applying the theorems discussed above. The system I want to 
consider next has received much attention in the literature on chaos in classical 
mechanics. It  is not an unphysical abstract system as is the reformulated wheel 
we have just been considering. The system is called a kicked rotor and it gives 
rise to what  is known as the standard mapping. 

4 T h e  K i c k e d  a n d  U n k i c k e d  R o t o r s  

The object of this section is to illustrate explicitly how a system which is com- 
pletely integrable, with dynamics exhibiting nothing like exponential sensitivity 
to initial conditions, can nevertheless yield a sequence of measurement results 

5 Homer White; private communication. 
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which is (absolutely) algorithmically random. 6 Really, what  I am doing is re- 
formulating, once again, my original roulette wheel example. But to make easy 
contact with the chaos literature, I shall switch to speaking of a rotor rather  
than  a wheel. The idea is tha t  we are going to measure the location of the ro- 
tor at strange intervals of time, so that  the positions for the integrable rotor 
will exactly imitate those of a well known, genuinely chaotic system. The main 
issue here will be to demonstrate  tha t  if we want to apply the Brudno-White  
and Pesin theorems, we must be very careful to insure tha t  our "observables" 
relate properly to the underlying structure of the sys t em- - the  very structure 
tha t  allows us to define "exponential divergence." 

Let me first describe the t ime dependent Hamiltonian system known as the 
kicked rotor. This system consists of a bar of moment  of inertia I which is 
fastened to a frictionless pivot at one end. (There is no gravity.) The other end 
of the bar is subject to periodic delta-function kicks of period T. See figure 8. 

The  amplitude of these instantaneous impulses is dependent upon the angular 
position of the rotor and is proportional to the value of a parameter  k. Between 
kicks the angular momentum Pe is constant and so throughout  tha t  interval, 
evolves linearly in time. 

f 
Periodic 
kicks 

Fig. 8. The Delta-Kicked Rotor 

The  system has the following Hamiltonian: 

P~ 6(t aT) H(O, Pe, t) = ~ + k cos 0 - (4) 
n 

Hamil ton 's  equations for this system are: 

dpe OH 
- - k sin ~ ~ 6(t - nT) 

dt 08 
n 

6 I want to especially thank Mark Wilson for a number of helpful discussions concerning 
this example. 
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dO OH Po 
- - ( 5 )  

dt Opo I 

Integrating these last two equations from a t ime just before the kick, t = n T  - e, 
to a t ime just before the next kick, t = ( n +  1 ) T -  e and setting I = 1 and T = 1, 
yields the so-called standard map: 

On+l = On q-Pn+l mod 27r 

P~+I = Pn + ksin0n (6) 

Equations (6) describe a Poincare return map at unit t ime intervals for the kicked 
rotor with the Hamiltonian (4) above. Figure (9) shows the t ime dependence of 
the angular position and of the angular momentum for this delta kicked rotor. 

When k = 0 the map reduces to 

On+l = On -~ Pn mod 27r 

Pn+ l = Pn = Pc (7) 

Thus, Pn = Pc is a constant of the motion and this corresponds to an integrable 
rotor spinning with constant angular momentum.  This is the most regular and 
periodic of dynamical systems. 

On+2 

On+l 

0 n 

0n_l 

0 P 

I 
Pn+2 

Pn+ 1 

Pn 

(n-1)T nT (n+l)T (n+2)T 
t t 

(n-1)T nT (n+l)T (n+2)T 

Fig. 9. 0 vs. t and p vs. t Plots 

For this unkicked rotor, if one has two nearby initial conditions, (01, pc) and 
(02,pc) such tha t  d(01,02) = ~, then for any t ime n, d(Tn01, Tn02) = e; so, there 
is clearly no spreading of values in angular position. On the other hand, as fig- 
ure 9 suggests and as has been verified by numerical experiment, for the kicked 
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rotor two points initially close to one another in phase space will yield exponen- 
tially separating trajectories for sufficiently high values of the kick paramete r  
k. In fact, when k > 8.888, there are no discernible KAM tori and it appears  
tha t  the entire surface of section is covered by a single ergodic orbit. Chirikov 
(1979) I t  is likely, therefore, tha t  the sequence of 0-values will be algorithmically 
random. 

Now let us suppose tha t  inside a black box we have an unkicked rotor. Then 
its 0 vs. t plot will look like tha t  in figure 10. 

0 
2n 

0 
nT (n+l)T (n+2)T (n+3)T (n+4)T (n+5)T 

Fig. 10 .0  vs. t for the Unkicked Rotor 

The slope of the (O,t) path,  ( 0 n +  1 -- On)/AT, is just equal to pc- the  constant  
momentum.  Furthermore, plotting Po vs. t yields the graph in figure 11. 

P0 

nT (n+l)T (n+2)T (n+3)T 

Fig. 11. po vs. t for the Unkicked Rotor 
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Now suppose we superimpose the (0, t) plot for the unkicked rotor (figure 10) 
on the (0, t) plot for the kicked rotor with a high value for k tha t  renders the 
kicked system fully chaotic. See figure 12. Although I will picture only a few 
iterations, one must think of the entire sequence of values < Oi > as having 
positive algorithmic complexity. For simplicity we set T = 1. 

On+2 - 2 n  

On+l- II III 
% I I 

(r-l) n [ (n+l) (n+2) (nl+3)[ (n~-4) ~n~-5) 

"~n Tn+l '~n+2 

t = n  

Fig. 12 .0  vs. t for both Rotors 

For the kicked rotor at t ime n, 0 = 0N; at time n + 1, 0 = 0~+1 etc. Clearly, 
if the slope On+l - On = Pn+1 is greater than the slope Pc for the unkicked rotor 
then the kicked rotor gets to the position 0~+1 faster than does the unkicked 
rotor. Similarly, if the slope 0~+1 - 0N < Pc the unkicked rotor will arrive at 0~+1 
from 0n in less time than the "kicked" rotor. Let Tn be the time taken by the 
unkicked rotor to get from 0~-1 to 0n, and Vn+l the time for it to get from 0N 
to 0n+l. Then, since the momentum for the unkicked rotor is a constant Pc, we 
must have the following relation between these times: 

On..b l - -  O n On - O n _  1 
- -  - -  P c  

T n  + l Tn  

Hence, 
- on) 

",n+l = \ O n -  ' '  

and using the equations of the standard map (6), we get 

7-~+1 = p---~ / T,~ (8) 
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or equivalently: 
( (O n -- On_I) "1- k sin On / Tn (9) Tn+l 

Now, suppose inside the black box containing the unkicked rotor there is a clock 
which opens a shutter at times 71,72, T3,...  thereby allowing an angular position 
measurement to be performed. The box then outputs the 0-values determined by 
these position measurements. But, these O-values are exactly the same as those 
that could be determined by a shutter operating at unit intervals of t ime on a 
kicked rotor. 

The point of all of this should now be fairly clear. We have been supposing 
that  the sequence < 0i > from a kicked rotor is algorithmically random-the  
value for k is sufficiently large. Using the Brudno-White theorem and Pesin's 
theorem we can infer that  with probability one the kicked rotor exhibits expo- 
nentially sensitive dependence on initial conditions. And, we would be correct 
in making this inference, as many numerical experiments have shown. But  since 
the same algorithmically random sequence can be output  by the unkicked ro- 
tor, the inference fails for that  system, since as is quite clear from the data  of 
figures 10 and 11, that  system does not admit any separation of trajectories in 
phase space. In fact, the phase space for the unkicked rotor is, once again, the 
cylinder of figure 5. 

In this example, we are measuring the position of the unkicked rotor at 
strange times. But, the time of measurement is something that  is completely 
determined by past values of the sequence of measured values. So, unlike my 
original roulette wheel, this is in fact, a genuinely deterministic dynamical sys- 
tem with integrable motion which nevertheless explicitly yields a sequence of 
measurement outcomes that  is algorithmically complex. 

The reason it is possible to construct this example, in the face of the theorems 
of Brudno-White and Pesin is that  the transformation T which supplies the 0- 
values does not advance the system in unit intervals of "real" time. Instead, it 
advances the system in unit intervals of T-time. There is a structure imposed 
upon the system by the independent variablc time. In fact, this s tructure is in 
part  what  allows for the definition of the Lyapunov exponents in the first place. 
In shifting from real t-time to T-time, the Lyapunov exponents of the trajectories 
evolving under the transformation T change. In effect, this mapping from t-time 
to T-time installs a new differential structure on the phase space manifold. The 
definition of chaos advocated by Ford, does not pay sufficient attention to this 
underlying structure provided by the independent variable. 

5 C o n c l u s i o n  

At the beginning of the paper I asked what one can infer about the degree 
of instability of a dynamical system, if one knows that  its behavior over t ime 
is unpredictable. If one formalizes the notion of unpredictability in terms of 
the algorithmic complexity of a sequence of measurement results performed on 
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the system, then there are theorems due to Brudno and White and Pesin that  
provide a partial answer to this question. If the conditions of these theorems are 
met, then it does look like the following chain of probability one equivalences 
holds: (positive algorithmic complexity) ~ (positive metric entropy) ~ (positive 
Lyapunov exponents). 

The  discussion in section 3 shows that  the notion of absolute complexity 
which appears in the Brudno-White theorem may perhaps not be the best way 
to formalize our concept of unpredictability. Typically we have at least some 
information about other quantities of interest on our system besides the one we 
are measuring. This means that  we really should look at the complexity of our 
sequence of measured values conditional upon this further information. The dif- 
ference in the conditional algorithmic complexity of the deterministic "roulette" 
wheel compared to that  of the ideal hard sphere gas illustrates why this notion 
is useful. If we pay attention only to the absolute complexity of the observed 
sequences from the two systems, the systems appear to be equally unpredictable. 
The difference in conditional complexity is the result of a difference in the na- 
ture of tha t  part of the dynamics of the two systems that  can be considered 
Hamiltonian: Once we are given the value for the momentum for a given spin 
of the wheel, the system undergoes a completely integrable evolution until the 
next spin. It is ultimately because of this that  the conditional complexity of 
the wheel is zero, while the completely nonintegrable unstable motion of the 
ideal gas guarantees that  its conditional complexity relative to the quanti ty we 
considered is positive. 

The wheel discussed here, however, is an abstract construction. Its full phase 
space X is the Cartesian product of the space f2 and the space A ~176 of infinite 
sequences. My main concern both in this and in the previous paper is chaos 
in Hamiltonian systems. Therefore, in section 4 I presented evidence that  an 
integrable Hamiltonian dynamical system, the unkicked rotor, can yield mea- 
surement results that  are algorithmically random and hence, completely unpre- 
dictable. The reason this is possible is that the measurements are performed at 
odd times. Nevertheless, when the measurements are performed is completely 
determined by manipulating the independent variable, time, given the equations 
for the chaotic kicked rotor. There is nothing in classical mechanics tha t  would 
rule out this performance of position measurements on the unkicked rotor at 
these times. There is, therefore, an important sense in which the degree of in- 
stability of a system is more fundamental than the algorithmic complexity of 
a sequence of measurement results for defining "chaos" in classical dynamical 
systems. This does not contradict the results of the ergodic theorists discussed in 
section 2: If we had previously determined that  the transformation T advances 
the system in real t ime and not in T-time, then the inference from algorithmic 
complexity to sensitive dependence on initial conditions will go through. But  
determining this requires tha t  we look first to the dynamics of the system, to 
its phase space structure. For the purposes of making an inference solely from 
the unpredictability of a system's output  to some conclusion about  the degree 
of instability present in the dynamics, Ford's claim that  "sensitive dependence" 
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and "deterministic randomness" are synonymous, is simply wrong. 
Finally, it is worth mentioning that  Ford has, perhaps, an ulterior motive for 

preferring the algorithmic complexity definition of chaos. He wants an account 
tha t  can easily be brought to bear on the question of the existence of chaos in 
quantum mechanics. In effect, defining chaos in terms of algorithmic complexity 
provides a "theory neutral" definition, since one need not look to the specific 
dynamics of the theory. One need only pay attention to system output .  Ford 
has repeatedly argued that  on his view, quantum mechanics exhibits no chaos 
whatsoever. (See Ford (1988), Ford (1989), and Ford et al. (1991).) Furthermore, 
for him this is regarded as a serious flaw of quantum mechanics. 

In Ford et al. (1991), it is claimed that  the failure to find "deterministic 
randomness" in quantum mechanics, and the failure to show how it emerges 
in the "classical" limit, is evidence for the failure of the correspondence princi- 
ple. Though it is beyond the scope of this paper to debate the issue here, my 
view is that  making algorithmic complexity the key definiens of chaos, has led 
to a rather naive and conservative view of the correspondence principle. (See 
Bat terman (1991), Batterman (1992), and Bat terman (1995).) There is much 
work currently being done in semiclassical mechanics which, may plausibly be 
construed as a detailed investigation into the correspondence relations between 
classical and quantum mechanics in light of questions about chaos. Ford's dy- 
namically independent account of chaos, apparently invites us to downplay the 
significance of this work. 
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Discuss ion of Robert  Bat terman's  Paper 

Bat terman,  Chirikov, Miller, Noyes, Suppes 

Suppes: I 've just  a couple of remarks about  the roulette wheel. As you know 
there is a long history s tar t ing with Poincar~ and the method of arbi t rary func- 
tions. Now an even bet ter  and clearer example of this method of arbi t rary func- 
tions is an example of coin flipping by Keller in which you consider you have an 
extremely simple integrable system with a simple differential equation where you 
have an initial velocity vertically and then a rotation with a constant angular 
rotat ion velocity. And of course given the initial conditions and assuming tha t  
the coin lands on a soft flat surface, so it won ' t  flip back over some of the time, 
then everything is integrable. So you have a deterministic system. What  is inter- 
esting about  this seems to me - which was very much realized already by Hopf  
in the 1930s - is tha t  real systems are really unmanagable. So for example, if 
you flip a coin those initial conditions are simple enough but if you let it bounce 
it is hopeless to give a detailed analysis of the bouncing of the coin on a hard 
surface. Or in the case of the roulette wheel, which you mentioned, you have 
a s tandard dissipation from slowing the wheel down for otherwise it will go on 
forever, so there must be some method of stopping it. But the s tandard way of 
stopping it leads to a really unanalyzable dissipative system. So what  I would 
claim is tha t  we actually don ' t  know how to analyze in detail the mechanical 
systems corresponding to real roulette wheels and real coin flopping. We cannot 
actually give an integrable system. So we end up really because of the inability 
to analyze what  happens when the coin lands or when you apply friction to 
stopping the wheel in detail. By treat ing it abstract ly as random, but we are not 
able to actually analyze in complete detail the dynamical system. Do you agree 
with tha t  analysis or do you see ... I mean, I raise it because of your emphasis 
on the roulette wheel. 

Batterman: There has actually been a fair amount  of work done on the roulette 
wheel by chaos theorist J.D. Farmer - on real roulette wheels like they have in 
Las Vegas. This work is described in a book called "The Eudaimonic Pie". He 
was able to beat  the system and predict roughly where the ball is going to fall 
using a computer he designed and built. So with regard to real roulette wheels, 
I think he had a pre t ty  good model for what  was happening. 

Suppes: Some marvellous details from the mechanical standpoint: after all you 
can buy on a market  a coin flipper tha t  give you heads all the time, if you have 
a landing surface tha t  is soft and smooth. You can buy such a device. They  are 
available from magician's shops. So if you don ' t  have any hard surface for i t 's  
going to pop up and turn over etc. where you have to t ry  to analyze, then you 
can build a system tha t  will guarantee heads and tails whatever you wish, with 
very high probability. So I ' m  not saying tha t  I did mean to suggest a system was 
a Bernouilli shift in any serious way. I t ' s  just  that  we can analyze the dynamical  
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aspects. So in this guy's s tudy he does not what Hopf found you could not 
analyze - in detail the mechanical system. 
B a t t e r m a n :  Actually, in his s tudy - I think - he does analyze it in detail. 
Suppes :  Analyze with the friction, or not? You may answer, "very strict", you 
know. Do you claim he gives an integrable analysis mirroring exactly the friction? 
I am sceptical about  that.  
Ch i r ikov :  The remark which most of you must know of course: a real roulette 
wheel is not just a wheel but a ball which is very important. 
Suppes :  A bouncing ball in fact is rather like flipping the coin on a hard surface. 
Ch i r ikov :  No, in a roulette wheel a ball may change completely the statistical 
properties. But I have a question [to Suppes]. Why did you say a dissipative 
system is not anMyzable? 
Suppes :  I mean as a dynamical system this kind of thing I am referring I don' t  
think there is any real improvement on Hopf's analysis in the 1930s. 
Chi r ikov :  You mean if you consider fluctuations? 
Suppes :  Yes, for example, when you flip a coin. You are absolutely right with 
the ball. Tha t  is why I am extremely sceptical in the reference you give there is 
any serious analysis of the details of mechanics, because the ball is exactly like 
flipping and landing on a hard surface. I mean in broad terms it is the same 
unmanageable physical phenomenon in detail. 
B a t t e r m a n :  I just have mentioned the book where you can read about  it. It 
is an interesting story: they actually went to Las Vegas with computers in their 
shoes. They observed the wheel and how the wheel spins, they timed the bMl's 
motion to get initial conditions for the system and they were able to predict - 
tha t  is, beat the odds. 
Suppes :  That ' s  different from having an analysis of dynamical systems. 
B a t t e r m a n :  I 'm not sure. In order to design the program, he had to solve the 
problem - solve the equations of motion. But the point I am trying to make 
is the following: Consider flipping a coin in space and spinning a wheel forever 
without friction. These are rigid disks rotating, respectively, out of their plane 
and in their plane. They  are integrable systems in the strictest sense. Neverthe- 
less it seems to me that,  since the rotor is essentially equivalent to the spinning 
wheel, you can have a rotor spinning without friction and look at it at funny, 
but deterministically determined times. One gets a sequence of measurement 
results which is algorithmically random. That ' s  what I was trying to show. As 
a consequence, one cannot infer, by merely looking at the sequence of measure- 
ment results, the positions of the rotor, that  the system generating that  output  
is sensitively dependent on initial conditions. 
Supp e s :  You can get the same result by simply making measurements of a real 
line - just  taking measurements of the real line - nothing moving at all. I take, 
according to some intervals, measurements of the real line, and I will get the 
same result. I get a random sequence. Though it's numbers I get, it satisfies the 
same property. 
B a t t e r m a n :  The numbers may be algorithmically random but my point is: If all 
you are given is a system within a black box which outputs a random sequence 
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of numbers, can you infer tha t  the system which generated tha t  sequence is 
sensitively dependent on initial conditions? I am trying to argue tha t  the answer 
is: "No!". 
S u p p e s :  But  there is a fundamental  distinction in the s tandard statistical anal- 
ysis of randomness. On the one hand, there is a characterization of randomness 
tha t  is very much in the spirit of complexity - namely: randomness is a phe- 
nomenological property. I t  only depends on properties of the numbers you are 
handed. And those numbers can be generated and nobody says: "Those num- 
bers can only be generated by a dynamical system." Now the second meaning is 
randomness in the sense of a mechanism. Where now you have - in your case - 
a dynamical  system with certain properties. The theorems you s ta te  do not at  
all s ta te  tha t  a sequence of numbers is algorithmically complex if and only if it 
is generated by a dynamical  system of a certain property. You have many  ways 
you can think about  generating phenomenological sequences. And I think tha t  
is really what  your argument  is pointing to. Is that  a reasonable interpretat ion? 
B a t t e r m a n :  I think so. I am concerned, in the paper, with chaos in Hamil tonian 
systems. I was concerned with Ford's claim tha t  positive algorithmic complexity 
or randomness of a sequence of symbols (numbers) is a synonym for chaos in the 
sensitive dependence sense which appears in the literature. I was just  t rying to 
argue tha t  it is not a synonym, but tha t  the dynamical features are basic when 
it comes to finding a definition of chaos for dynamical systems. I do not deny 
tha t  one can have abstract  systems generating Bernouilli sequences or whatever.  
Originally, when I wrote the first paper "Defining Chaos", I was unaware of 
Pesin 's  theorem and so I believed tha t  there was even less agreement between 
the complexity definition and the definition in terms of sensitive dependence. 
The  problem was this: Suppose I had an abstract  system for which one could not 
possibly define a notion of spreading of trajectories (since the system doesn ' t  live 
on the appropriate  sort of manifold). How could one possibly infer from a random 
output ,  a random sequence of numbers, that  there is any kind of system inside 
the box which was even capable of exhibiting sensitive dependence on initial 
conditions. But  Pesin's theorem makes the connection between entropy and the 
Lyapunov exponents, and so the connection between algorithmic randomness 
and sensitive dependence is actually stronger than I believed. The focus here, 
however is this: I f  you want to apply the Brudno-White and the Pesin theorems 
to infer from algorithmic randomness of a sequence of numbers to a claim to 
the effect tha t  the system generating that  sequence is exponentially sensitive to 
initial conditions, then you need to know something about  the dynamics first. 
One cannot just take a look at the sequence alone. Unpredictability in tha t  sense, 
cannot  guarantee chaos in the sense of sensitive dependence. 
C h i r i k o v :  You have to use tha t  theorem in the opposite way: to infer randomness 
in some sense of complexity from dynamical instability. 
B a t t e r m a n :  Tha t  is the way I think it should be used. 
C h i r i k o v :  Here you should have no contradiction, yes? 
B a t t e r m a n :  Right! I agree. I t  is just tha t  Ford tends to use it the other way. 
W h a t  I did not get to mention (although it is at the end of my paper) is tha t  
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there is another  motivation for Ford to come up with the algorithmic complexity 
definition. I t  is tha t  he wants a sort of theory neutral definition of chaos. This 
is because he wants to be able to talk about quantum chaos. If chaos is just  
a synonym for algorithmic randomness, then it is a dynamically independent 
definition. If  quantum mechanics is to be chaotic, then all one would need to do 
is look for random sequences of values in, say, the energy spectrum. If  random 
sequence is discovered then quantum mechanics would be chaotic. Ford argues 
tha t  we won' t  be able to find such algorithmically complex outputs  in quan tum 
mechanics. In my view this is a mistaken approach. If quantum mechanics is not 
chaotic, it is because of dynamical features of quantum systems. There is much 
work being done in semiclassical mechanics (Prof. Chirikov calls this "quasi- 
classical" mechanics) about  the connections between quantum mechanics and 
classical mechanics in the light of chaos. But, if you take this approach-defining 
chaos in terms of algorithmic randomness - then it seems tha t  you are down- 
playing the significance of all the current work in semiclassical mechanics. This 
work, in my view, an extended investigation of the Correspondence Principle - 
the nature of correspondences between the two theories. If  one takes chaos to be 
synonymous with algorithmic randomness, one ignores all of that .  
Mi l le r :  I am puzzled by some of the things you say. I am certainly puzzled by 
why deterministic laws should be expected to lead to algorithmically complex 
outcomes. The outcome of the deterministic law, I take it, shows tha t  the law 
compresses the information involved. If we think of a case such as the logistic 
function, we can work out its entire evolution from a simple formula. So I take 
the evolution of tha t  function not to be in any sense complex - algorithmically. 
Now why is it tha t  it nonetheless produces algorithmically complex sequences of 
some sort? I suppose that  the simplest case is one in which - instead of taking 
the actual  value of the function at each point - we consider only a projection of 
it on two points, 0 and 1 - say, is it greater than a half or is it less than  a half. 
B a t t e r m a n :  You are looking at a partition and the parti t ion codes tha t  order. 
Mi l le r :  Tha t ' s  right. Now is tha t  a characteristic feature? Is it t rue also for the 
roulette wheel and for coin tossing that  what  we are doing is throwing away 
information, deflating what  is known by the system and partit ioning it. 
B a t t e r m a n :  Certain partitions - relative to their transformations - are gener- 
ating parti t ions in the sense that ,  roughly, if one has the entire orbit  from the 
arbitrari ly distant past  to the arbitrarily distant future, then tha t  orbit  - tha t  
sequence of numbers relative to the partition - is sufficient to uniquely specify the 
trajectory, modulo a set of measure zero. So, in a measure-theoretic sense, you 
can have all the information there is to know. In other words, you can uniquely 
pick the point, modulo a set of measure zero of points, by looking at  this orbit  
sequence. The  idea is that  if this orbit sequence is algorithmically complex, then 
you've got a dynamical  system generating random sequences. 
Mi l le r :  And in what  sense is it deterministic? 
B a t t e r m a n :  Where the point is, which cell of the parti t ion - whether it is zero 
or one - is completely determined by where it 's point was in the past. 
Mi l le r :  Are we talking physics here? I mean, every particular sequence can be 
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thought  of as deterministic. 

B a t t e r m a n :  If you are dealing with ordinary differential equations anyway de- 
terminism means existence and uniqueness. 

Mi l l e r :  Given the entire evolution from the past  of the sequence, or just  the 
previous value? 

B a t t e r m a n :  From a point: there is one and only one possible t ra jectory in the 
past  or the future. 

Mi l l e r :  Wha t  about  indeterministic randomness? 
B a t t e r m a n :  You cannot - as far as I know - define a notion of sensitive depen- 
dence or t ra jectory instability unless you have a deterministic equation. 

S u p p e s :  Oh, tha t ' s  not the case. For example, a Chain is ergodic if and only 
if it has a unique limiting distribution independent of initial s tar t ing point. A 
stochastic process tha t  is dependent on initial conditions is not ergodic. Tha t ' s  
a s tandard concept of sensitivity to initial conditions. For example you have 
zero-one processes - I mean, they depend on the initial conditions. So I mean in 
other words there is a standard concept of sensitivity to the initial conditions for 
indeterministic random processes, and tha t ' s  s tandard in stochastic processes. 

C h i r i k o v  lto Suppes]: But  dependence of what  - t ra jectory or function? 

S u p p e s :  Dependence over t rajectory in the limiting outcome. 
C h i r i k o v :  The function also does not depend on initial conditions, a distribution 
function. 
S u p p e s :  Yes, tha t ' s  different. This is an example. I mean ergodic in the sense 
of the Markov chains - which is very close to ergodic in dynamical  systems - is 
exactly what  is not sensitive to initial conditions. I just  mentioned tha t  because 
those are familiar cases I have extensively studied. 
B a t t e r m a n  [to Suppes]: Do you mean by an "indeterministic system" a system 
which can be characterized, say, by having the property of being a K-system, a 
Bernoulli system, or some kind of Markov process. 

S u p p e s :  A Markov chain of infinite order. 
B a t t e r m a n :  Wha t  interests me is the fact tha t  deterministic systems, in sense 
of classical, Hamiltonian systems, can be shown - in certain instances, with lots 
of idealization - to be K-systems. This is true for a hard sphere gas in a box. My 
view of abst ract  ergodic theory is tha t  it provides a classification, a hierarchy of 
statistical properties. The interesting thing from the physical point of view is tha t  
certain classical systems can actually be shown to possess statistical properties 
at the high end of the hierarchy. Being ergodic or mixing isn't  good enough to 
get one the behavior one needs for, say statistical mechanics ... 
Noyes :  Discussion of classical systems, such as we have been having here, often 
makes an idealization about  measurement which is unrealistic when we discuss 
actual  laboratory practice. Actual measurement  always has fixed measurement  
accuracy set by the current technology, and this l imitation when included in 
the analysis has important  and unexpected consequences, which are discussed 
in more detail in my paper. This does not have to do with quantum mechanics 
directly, but  what  I call scale invariance bounded from below ends up restricting 
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what we can say about classical systems in a way that  looks surprisingly like 
quantum mechanics ... 
B a t t e r m a n :  I agree that there is limited accuracy of measurements. If we think 
of a parti t ion of phase space in the way of orthodox statistical mechanics, then it 
may represent a possible measurement with limited accuracy: you can determine 
whether the system's phase point is in a cell of such and such size. So a par- 
tition represents, given certain idealizations, a measurement allowing for finite 
measurement accuracy. 
Noyes :  Actually, it is more complicated than dealing with partitions in sta- 
tistical mechanics. Fixed measurement accuracy interpreted as requiring that  
measured results be integers times some fixed, smallest dimensional unit pro- 
duces a lack of determinism that ,  from my point of view, cannot be avoided by 
taking a limit. I do not allow that  idealization. 
Ch i r ikov :  But not absolutely fixed? 
Noyes :  Yes, absolutely fixed. 
Chi r ikov :  Why, what is this fixed accuracy? 
i'qoyes: Physically there is such a limitation. 
Ch i r ikov :  Do you mean a global limitation? 
Noyes :  There is always a physical limitation on the measurement of position. 
If you t ry  to measure the position of a particle to better  than half an elec- 
tron Compton wavelength, you will always produce electron-positron pairs with 
some finite probability. I am talking about the actual physical situation in a 
laboratory. So there is a global physical effect. But you can simulate this lim- 
itation without actually putting the electron-positron pair degrees of freedom 
into your model just by assuming that  you have a finite, fixed accuracy to which 
you can measure position and time. Then you get results that  look very much 
like quantum mechanics. It also allows a new type of discussion of how to take 
the "correspondence limit". Tha t  is, one can start  from a finite particle number 
relativistic particle dynamics (not a quantum field theory) and see under what 
circumstances the results can be approximated by classical physics. 
Ch i r ikov :  But quantum limitations are weaker because only the product  of the 
two conjugated variables is restricted but not each variable. 
Noyes :  What  you say may be true of the theory called non-relativistic quantum 
mechanics. But that  theory does not accurately describe the world we live in. The 
world we live in is one in which pair creation actually occurs at short distance. To 
ignore that  fact and to talk about either classical mechanics or non-relativistic 
quantum mechanics as if that  is the real world explored by physicists in their 
laboratories is, I think, a mistake. I am making a fairly strong methodological 
claim ... 
Ch i r ikov :  No, no. The limitation depends on whether you study the high-energy 
physics or low-energy physics. 
Noyes :  But this limitation applies at any energy if your precision is high enough. 
After all, the Lamb shift in the hydrogen spectrum requires a very low energy 
measurement. But it shows these effects. Or for that  matter,  proton-proton scat- 
tering at low energy, if you look with sufficient precision, shows a modification of 
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the Coulomb scattering law at distances of half an electron Compton wavelength, 
which was predicted by L.L. Foldy. This characteristic modification of the angu- 
lar distribution of the scattering cannot be due to either electromagnetic or to 
nuclear effects but in fact is due to vacuum polarization, i.e. electron-positron 
pairs. For details see H.P. Noyes, Phys. Rev. Letters 12, 171 (1965) and references 
therein. 
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Abs t r ac t .  We introduce basic notions, concepts, and principles of synergetics and 
work out the interdisciplinary aims of this new scientific discipline. To some extend the 
laser as a system of physics as well as the application of synergetics to a system taken 
from economics will be presented. A generalization of the methods to an important 
class of functional differential equations will be outlined. 

1 General aspects of synergetics 

Synergetics can be characterized as the science of cooperation and self-organi- 
sation. As an interdisciplinary scientific field it has been founded by H. Haken 
in 1969 Haken (1983), Haken (1987). The aim of synergetics is to describe the 
macroscopic behavior of complex open systems from a unified point of view. 
This results, for instance, in the spontaneous emergence of spatial, temporal ,  
and spat io-temporal  structures and /or  their special functioning. The complex 
systems which are considered can be characterized schematically by the following 
general properties: 

(i) The systems are composed of many  subsystems. I t  turns out tha t  this fact 
allows a description of the systems under consideration on two different hier- 
archical levels: a microscopic point of view which is at tr ibuted to the scales 
of the subsystems on the one hand and, on the other hand, a macroscopic 
level of analysis which is a t t r ibuted to the scales of the composed system. 

(ii) The subsystems and their interactions form a complicated nonlinear system. 
In correspondence they follow a high-dimensional set of nonlinear evolution 
equations. As an important  result, for example, there exists no superposit ion 
principle in the structure of the solutions. 

( i i i )  Eventually the systems must  be open. I t  is this fact which guarantees tha t  the 
systems can be driven far away from, e.g. thermal equilibrium and appears  
naturally as a necessary condition tha t  processes of self-organization can  
arise. 

Taking into account these given conditions we still realize tha t  systems of this 
kind can be observed in various places of natural  as well as of human sciences. 
Surprisingly it turns out tha t  close to critical regions, where new pat terns  of 
behavior are created via an instability by the system itself, all these systems 
show common universal behavior on macroscopic scales. In the following we 
shall present important  examples of such systems from the animate as well as 
the inanimate world. 
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As an example from physics we consider a solid state laser Haken (1985), 
Haken (1970). Here the subsystems are identified as the laser active atoms. The 
laser is an open system because the device is pumped from outside. The spon- 
taneous self-organization is manifested in the coherent action of the laser active 
atoms which results in the emission of coherent laser light. We emphasize that  
the laser has become a system of paradigmatic value for synergetics. One of the 
reasons is that  all steps of the theory can be verified by starting from first phys- 
ical principles of quantum theory and quantum field theory. 

energy 

mirrors 

laserlight 

Fig. 1. Schematic diagram of a solid state laser device. 

As a second example we mention a system from hydrodynamics Chandera- 
sekhar (1981), Friedrich et al. (1990), that  is the convection instability. In the 
B~nard problem (compare Fig. 2) a fluid layer is heated from below in the 
gravitational field of the earth. The heat supplied from below shows tha t  we are 
dealing with an open system. 

The subsystems are the molecules of the fluid, the spontaneous emergence 
of macroscopic ordering is reflected in the observed highly ordered convection 
patterns,  e.g. the role pattern of Fig. 3. 
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Fig. 2. Schematic diagram of a B~nard System (T2 < T1). 

Fig. 3. Hexagonal cells of a liquid layer heated from below (Bdnard-Instability). 

In chemistry the autocatalytic reactions form an important  class of examples. 
The most prominent experiment is the Belusov-Zhabutinski reaction (Haken 
(1983)). Again we consider an open system when matter  in form of the re- 
actands is continuously supplied and the products of the reaction are removed 
accordingly. The reaction can settle down in two different states which are macro- 
scopically observed as the colours blue and red, respectively. The macroscopically 
ordered states are observed as coherent spatio-temporal pat terns (compare Fig. 
4). 

The fields of biology and medicine are especially rich of examples for syner- 
getic systems. Here we mention the coordination of movements of animals and 
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Fig. 4. Chemical spiral waves of the Belusov-Zhabutinsky-Reaction. 

humans Haken et al. (1985). For instance, the different gaites of horses can be 
interpreted as the coherent action of muscle and nerve cells, the tissue etc. They  
are considered as the subsystems. The processes of metabolism classify animals 
as an open system. 

2 T h e  l a s e r  

Here it is our concern to introduce basic notions and principles of synergetics 
by discussing the laser action more closely. To that  end we first start  from a 
'Gedankenexperiment' which is concerned with the generation of coherent light 
from different points of view. In a second stage we shall discuss the laser action 
in more detail by giving a mathematical point of view. The results will be used to 
present the general synergetic theory how to cope with complex systems Haken 
et al. (1983). 

2.1 R e m a r k s  on  t h e  n o t i o n  o f  s e l f - o r g a n i z a t i o n  

During the development of synergetics, laser theory has become an important  
pace-maker. Indeed, the detailed theoretical understanding of laser action has 
become an important paradigm for the development of a general theory of the 
systems under consideration. As it is well-known the emergence of laser action 
can be derived from first physical principles. Tha t  is to say, at the microscopic 
level the dynamic equations of the system are perfectly known, and the resulting 
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macroscopic behavior can be derived by using well-posed mathematical methods. 
Hence, the predictions of synergetics can be tested to a remarkable accuracy by 
using laser theory and experiments on laser devices. 

2.2 T h e  ~ G e d a n k e n e x p e r i m e n t '  

By way of 'Gedankenexperiment' ,  we present a simplified model of laser action in 
order to illustrate the concept of self-organization. When we consider light as an 
electromagnetic wave, we can describe it by its electric field strength E(t) being 
a function of time t. Coherent light, then, corresponds to a single, infinitely long 
wave track with a definite frequency and highly stabilized amplitude (compare 
Fig. 5). 

E(O 

Fig. 5. Coherent laser light. 
E(t) represents the electric field strength as a function of time t. 

In order to characterize the difference between normal and coherent light, we 
first consider a single atom with one outer electron, the so-called 'Leuchtelectron' 
(Fig. 6), the remainder of the atom being summarized as one effective nucleus. 

In our drastically simplified model, it is assumed that  the electron circles 
around the nucleus on a fixed circle with radius r, its position therefore being 
completely determined by angle r Since this circular motion is an accelerated 
uniform motion of a charge, it leads to the emission of an electromagnetic wave. 
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~ l e c t r o n  

Fig. 6. 'Leuchtelectron' circling around an effective nucleus. 
The electron is assumed to move with fixed radius r, its position being completely 
determined by angle r 

The ampli tude of the light wave emit ted by a single a tom (Fig. 7), however, 
is much lower than the high ampli tude of laser waves (compare Fig. 5). Indeed, 
in conventional lasers in the order of 10 is a toms are needed in order to produce 
the coherent light wave. 

Let us now consider the more complicated situation where we have two atoms 
(Fig. 8). 

The  position of the two 'Leuchtelectrons'  is now characterized by two inde- 
pendent phases, r and r In general, we will have to expect that  these phases 
are different because the electrons are independently circling around their own 
effective nucleus. The resulting light field, therefore, is given by the superposit ion 
of small wave tracks, each with a different phase. We may directly extrapolate  
from these considerations tha t  the light wave which is emitted by many  inde- 
pendent atoms will never lead to coherent laser light. In order to produce laser 
light, the electrons have to be all in the same phase (compare Fig. 9). 

There appear  to exist different frameworks as to how this synchronization 
can be produced. 

- In the cybernetic approach each individual a tom should be steered, e.g., by 
a central computer.  One would have to steer in the order of 10 is a toms 
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Fig. 7. The light wave emitted by a single atom. 

individually. Hence, the cybernetic approach appears to be inadequate to 
solve our problem. 
A pace-maker could be conceived to produce a coherent light wave. The 
pace-maker, then, has to interact with all the atoms, enforcing them to take 
the prescribed phase. Again, this idea appears to be unrealistic. Coherent 
action can only be reached when the response of the atoms to the pace-maker 
is linear. This can only be the case when the amplitude of the pace-maker 
wave is low. In such a regime, however, no stabilization of the amplitude is 
possible. 
From a synergetic point of view, the idea of self-organization can be intro- 
duced. Then, the system forces itself to behave in synchrony. In other words, 
the nonlinear behavior of the system generates a cyclic causality between the 
behavior on the microscopic ('Leuchtelectrons') and the macroscopic (coher- 
ent light wave) level of description, and thereby a macroscopic ordering of 
the system. In the following subsection we shall discuss this phenomenon 
more thoroughly. 

2.3 T h e  synerget ic  d iscuss ion  of  laser act ion  

In order to further elucidate the synergetic notion of self-organization, and to 
elaborate the relevant aspects of our 'Gedankenexperiment', we consider a typical 
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- -  E l  . . . . . . . . . . .  E 2  

Fig. 8. Incoherent electric light field of 2 atoms. 
The light field is given by the superposition of the two wave tracks. 

solid s tate  laser device. In between two mirrors which act as a resonator for the 
light field, the laser active atoms are embedded in a host crystal. The laser is an 
open system where energy is pumped from the outside in a controlled rate. As 
long as the energy supply is low, we observe that  the laser is acting as a usual 
lamp. As already noted this implies in our model that  the single electrons are 
circling independently and no phase correlation between different a toms occurs. 
A dramat ic  change is observed as soon as the energy supply exceeds a certain 
threshold value. Then, the laser suddenly starts to emit the coherent light wave 
which is depicted in Fig. 5. 

In synergetics, this phenomenon is understood as the spontaneous synchro- 
nization of the 'Leuchtelectrons'  which is produced by the system itself, i.e., in 
an act of self-organization. In other words, when we change a single unspecific 
control parameter ,  the energy supply from the outside, the system reacts with a 
spontaneous macroscopic ordering which is determined by the internal dynamics 
of the system. 

The  enhanced energy supply allows more and more atoms to generate their 
individual light waves. The nonlinear internal dynamics of the system, as well 
as the action of the resonator, allows the system to select a certain wave. The 
selected wave now acts back onto the atoms as a nonlinear pace-maker  and 
synchronizes the movements of the electrons around their nuclei. The  nonlinear 
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E 

t 

Fig. 9. Coherent light field as produced by many synchronized atoms. 

behavior of the system allows for cyclic causality to arise: The light wave is built 
up by the action of the independent subsystems, the laser active atoms, and then 
reacts back on the subsystems to enforce their coherent motion. In this way, the 
coherent wave can be generated. 

We summarize  our observations as follows: The microscopic level of descrip- 
tion in our model is provided by the single laser active atoms. The  coherent 
action of the  a toms beyond control parameter  threshold can be understood as 
a spontaneous macroscopic ordering of the atoms over the whole crystal. This  
ordering is realized by the coherent light wave which has emerged. In this sense, 
we may  consider the emerging light wave as an order parameter which forces (en- 
slaves) the subsystems to act in concert. This exemplifies a fundamental  principle 
of synergetics which has been called the slaving principle (Haken (1983), Haken 
(19s7)). 

2.4 A m a t h e m a t i c  m o d e l l i n g  o f  a l a se r  

A solid s ta te  laser consists of a host crystal, where the laser active a toms are 
embedded. The  crystal is placed into an optical cavity. For simplicity these a toms 
are t reated here as two level atoms. They are assumed to be located far enough 
from each other in a way that  their wave functions do not overlap. Obviously we 
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have a system which fulfills all criteria of a synergetic system mentioned in the 
beginning. It is an open system (the laser is pumped from outside), furthermore 
it is composed of many (identical) subsystems, the laser active atoms, and the 
system has the ability of spontaneous self-organization on macroscopic scales. 
Self-organization will be manifested in the coherent action of the laser active 
atoms over the volume of the whole crystal. The light field of the laser within 
the cavity can be described by its electric field strength E(x, t), where x denotes 
the space coordinate and t represents time. The electric field is decomposed into 
the eigenmodes u~ (x) of the cavity according to 

E(x, t) = E Y~ Ibm(t) - b~(t)]ux(x) �9 (1) 

Here N~ is a normalization factor and the set b~ (t) denotes the complex ampli- 
tudes which measure the strength of excitation and the phase of the different 
modes A. The state of the two-level atoms is characterized through their polar- 
ization P(x,  t) and inversion density D(x, t). Both of these mesoscopic densities 
are divisable into the contributions from the single atoms. When we enumerate 
the atoms by the index # and describe their location by the vector x t, we obtain 
for the polarization density 

P(x,  t) = E P , ( t )  5(x - x~), (2) 
t t  

where Pt,(t) is the polarization of the atom #. Expressing as usual Pt,(t) through 
the atomic dipole matrix element of the two-level atoms ~912 

= e 1 2  - c . c . ,  ( 3 )  

a~(t) becomes a complex measure of the polarization of the single atom #. 
Correspondingly d,  (t), the inversion of the single atoms, constitutes the inversion 
density 

D(x, t) = E d, 5(x - x,) .  (4) 

In a semiclassical theory, where the light field is assumed to behave classically 
and the atoms are treated quantum mechanically, one derives by the application 
of well-established approximations the following closed set of equations for the 
interaction of light and matter in a given optical resonator 

= + - i + (5 )  

t~ 

d~, = - ( i v  + ~)o~  + i E g t c ~ b ~ d t ,  + F~ ,  (6) 
A 

and 
cl~ = ~/11 (do - dr, ) + 2i E(g*~at~b*~ - c.c.) + Fdt, . (7) 
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These equations have been written in their spatially homogeneous version, 
where all the atoms are treated equally, wA denotes the frequencies which are 
associated with the cavity modes, ~ the transition frequency of the single atom. 
Damping terms have been added: n~ describes the losses in the cavity, "), is at- 
t r ibuted to the finite atomic life time, and ~'ll to the damping of the atomic 
inversion. The quantity g ~  characterizes the interaction of the field and the 
atoms. For the sake of completeness we have added fluctuating forces F ~ , / ~  
and Fd#. Their  detailed properties can be derived from a complete microscopic 
quantum field theoretical treatment of the system, when it is additionally cou- 
pled to different heat baths which provide damping and fluctuations in a way 
consistent with quantum mechanics Haken (1970). The so-called unsaturated 
inversion do takes the role of the control parameter which measures the exter- 
nal pumping of the system. We observe that  we have a set of basically nonlinear 
equations which defines the mesoscopic level of consideration and can be seen as 
a special realization of the general form (31). 

The number of equations (5-7) is enormous: about 10 is . Clearly, the follow- 
ing remark applies: It  is impossible to present a complete solution for this set 
of equations. On the other hand it appears useless even to know the complete 
solutions because it is impossible to manage the huge amount of information 
needed to specify initial conditions and their transformation in time along the 
solution curves. Accepting this point of view the situation turns out to be rather 
similar to problems which are related to the foundations of statistical mechanics 
(e.g. Landau and Lifshitz (1952)). As we shall see, however, the solution here 
will be quite different. 

2.5 I n t r o d u c t i o n  o f  Co l l ec t ive  Var i ab le s  an d  O r d e r  P a r a m e t e r s ,  
a n d  t h e  S lav ing  P r i n c i p l e  

In order to demonstrate how to cope with these equations successfully, we shall 
choose a more or less heuristic way which will be exploited in the next section 
when we discuss the general formalism. We shall assume that  the inversion of 
the atoms is homogeneous over the whole crystal 

d~ = d. (8) 

Under this circumstance it becomes possible to prove that  only one mode A of 
the light field can be macroscopicatly excited at the laser threshold, The system 
prefers the mode which is in resonance with the atomic frequency v.  Taking 
this for granted we can suppress the index A and introduce collective variables 
P and D in a straightforward way. We use 

P = guau (9) 

P 

and 
D = ~ d,  = Nd  , Do = ~ do, (10) 
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where N denotes the total number of laser active atoms. Transforming the vari- 
ables into a rotating frame by setting 

P = / S e x p { - i u t }  and b = b e x p { - i u t }  (11) 

we drop the tilde and choose the coupling constant g independent of the atom 
# to obtain 

[~ = - a b  - iP  + F , 

= - ~ P + i l g l 2 D b + F ,  

/ )  = 711(D0 - D) + 2i(Pb* - c.c.) + 1"o. 

(12) 

(13) 

(14) 

Here the fluctuations are defined in correspondence to the transformations (9- 
11). For the time being we shall neglect these fluctuations and concentrate on the 
deterministic part of motion inherent to these equations. The following observa- 
tion will become important  for the further simplification of the still complicated 
equations (12-14): For a good cavity laser there exists a pronounced hierarchy 
in the damping constants 

<< "Ylf << 3" (15) 

It  is of great value to note tha t  these damping constants can be at t r ibuted to 
characteristic time scales on which the different variables change. 

At this stage the most fundamental principle of synergetics, the slaving prin- 
ciple, comes into play. On the level of our heuristic considerations we are led 
to the  conclusion that  on macroscopic scales the slowest variable will rule the 
behavior of the complex many body system. Indeed we can use the observa- 
tion expressed through (15) to approximately solve the equations for the fast 
variables. In a first step we formally integrate (13) to obtain 

t 

P(t)  = ilgm 2 f exp[--y(t - r)l D(~-)b(T) dr .  (16) 

Here we have confined ourselves to the long term behavior to avoid transient 
solutions resulting from the initial conditions. Now we make use of the hierarchy 
in t ime scales (15). The characteristic time scales corresponding to the changes of 
the inversion and the field mode are much larger than that  of the polarization. As 
a consequence we expect that  the polarization has already reached an equilibrium 
value which, however, because of the nonlinear interactions is prescribed by the 
slow variation of the inversion and the field mode. Mathematically this fact can 
be expressed through the following approximation 

t 

P(t)  ..~ ilgl ~ D(t)b(t)  f exp[ -7 ( t  - ~-)] dT. 
- - 0 0  

(17) 
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Equation (17) reflects that the polarization follows the inversion and the field 
instantaneously (adiabatic principle). In other words, the long lived variables en- 
slave the behavior of the short lived ones. Performing the elementary integration 
remaining in (17) we obtain 

P ( t )  ~ Jig] 2 D ( t )  b ( t ) / 7 .  (18) 

Relation (18) yields a considerable simplification of the set of differential equa- 
tions (12-14): 

= + (Ig12/, ) D(t) b(t) (19)  

and 
b = 711(Do - D )  - 4(Igl2/ ) D(t)Ib(t)J 2 . (20)  

In a similar fashion we can again apply the idea of slaving by taking into account 
the first pair in the hierarchy (15). The formal integration of (20) yields 

t 

D = Do - (41g]2/7) / exp[-~/ll (t - r)] D ( T ) I b ( ~ ) l  2 d~-. (21) 

- -OO 

This equation can be solved iteratively by a standard procedure for the solution 
of Volterra integral equations of the second kind. We start with 

D ~ D 0) + D (2) + . . . .  (22) 

assuming the contribution of the integral in (21) to be a small quant i ty  By 
comparing different orders of magnitude we obtain 

D (1) -- Do (23) 

and 

t 

D (2) = -(41g[2/7) f exp[-711 (t - ~-)]Do [b(r)[2 dT (24) 

--OO 

-4]g]2 Do ]b(t)] 2 �9 (25) 
"YTII 

In evaluating (24) we have again taken into account consequences of the different 
roles of slow and fast variables. Inserting the result (25) in the equation for the 
field mode (19) we finally obtain 

= - - (n  -- Igl 2 D o / 7 ) b  - 4[gl 4 D0('y27j[) -1 ]b] 2 b. (26) 

Equation (26) represents the basic result which we have obtained from a heuristic 
application of the slaving principle: The complete macroscopic time dependent 
action of the complex laser system can be exhaustively understood from an 
effective equation of motion of one variable, namely the complex field amplitude 
b(t) of the surviving mode. In synergetics Hermann Haken has coined the notion 
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'order parameter' for this most important variable. Its value determines the 
inversion D and the polarization P through (24) and (18), respectively. They play 
the role of enslaved variables. The instantaneous value of the order parameter 
can be considered as a qualitative and quantitative measure of the spontaneous 
macroscopic ordering of the system. In the case of a single mode laser the newly 
evolving stable state is observed above the so-called laser threshold which is 
marked by the condition 

Do = ~ 71g1-2 �9 (27) 

2.6 Discussion of the  resul ts  

The idea of slaving in connection with the occurrence of collective modes has 
considerably reduced the complicated set of original equations (5-7) to an ana- 
lytically manageable equation of one complex order parameter b(t). It therefore 
turns out that the slaving principle not only becomes of fundamental importance 
from a theoretical point of view but also provides us with a practically applicable 
tool to handle quite complex systems with comparatively simple nonlinear equa- 
tions of motion: The spontaneous formation of macroscopic ordering far from 
thermal equilibrium is systematically mapped by time scale arguments onto the 
motion o f -  in general - few order parameters. 

There are further general aspects which can be gained from the laser example. 
Here we especially mention the notion of non-equilibrium potentials - a concept 
introduced by Graham and Haken (1971a), Graham and Haken (1971b) and 
extended by Graham and his coworkers (e.g. Graham (1989)). The introduction 
of non-equilibrium potentials has been achieved through the observation that we 
can write (26) in the form 

b -  OV (28) 
0b*' 

if we choose V (up to an arbitrary constant) 

v = ( ~ -  Igl2Do/,~)lbl 2 + 2 1 g 1 4 D 0 ( ~ 2 ~ l l ) - i  Ibl 4 �9 (29)  

Equation (28) can be interpreted as representing the overdamped motion of 
a particle in the potential V(b, b*). The minima of the potential become the 
stable stationary points of the system the maxima correspond to unstable ones. 
V therefore has all the properties of a Lyapunov function of the system. For this 
reason V(b, b*) rules the stability (and also the fluctuations) of the system. The 
shape of the potential V is changed characteristically by the variation of the 
control parameter Do (compare Fig. 10). The new ordered state above the laser 
threshold is reached through an instability and the minimum finally assumed is 
selected purely by chance (when, for simplicity, b is considered as a real variable). 
This reflects the role of the fluctuations. The transition can be classified as a 
symmetry breaking transition, where symmetry is restored through the action 
of the fluctuations. Following Haken we can give these observations the rank 
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of principles: Ordered states are created through instabilities far from thermal 
equilibrium and fluctuations are responsible for which of the possible ordered 
states of a system will eventually be acquired in a particular realization. 
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Fig. 10. Potential landscape for different values of control parameter a. 
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2.7 R e m a r k s  on  chaos  in laser  s y s t e m s  

We have taken the single mode laser instability, which is connected with the tran- 
sition from a lamp to laser action, as the simplest representative of an instability 
leading from microscopic chaos (in the sense of Boltzmann) to the spontaneous 
macroscopic ordering of a system. However, there exist higher order instabilities 
Haken (1983), Haken (1970), Weiss and Vilaseca (1991). Furthermore there is 
a possibility to observe chaotic states of the single mode laser. In fact, when 
we choose the field mode b(t) in (12-14) as a real variable and P(t) as purely 
imaginary the equations can be mapped onto the Lorenz equations Haken (1975) 
by appropriately staling and shifting the variables. When the cavity damping 
becomes large the conditions for the Lorenz instability can be met and a strange 
behavior of the laser light is yielded. Taking into account that  b, P,  and D are 
collective variables of the system, we may interpret this behavior as macroscop- 
ically chaotic, generated by the three collective variables of the system. They 
can again be considered as order parameters: All other degrees of freedom are 
enslaved by these few macroscopic variables. 

3 R e m a r k s  o n  m a t h e m a t i c a l  m e t h o d s  

3.1 Syne rge t i c s  - f rom t h e  mesoscopic  level to  mac roscop ic  o r d e r  

In the following we shall present an overview on the general mathematical 
method of synergetics for a situation where the details of the subsystems are 
completely known on a mesoscopic scale (compare Fig. 11). 

Complete knowledge means that  we know all the variables of the subsystems 
which we denote by Ui(i = 1, 2 . . . ) ,  the evolution of the single subsystems, as 
well as their mutual interactions. If we put together all the variables into a state 
vector U in a state space F 

U = (U1, U2, . . . ) ,  (30) 

its time evolution is typically governed by 
general type 

lJ  = N (U,V, 

Here N denotes a nonlinear vector field 
inhomogeneities indicated through the V 
parameters which have been abbreviated 
the presence of fluctuations which may be 

an equation of motion of the following 

{a}) + F .  (31) 

in U which may depend on spatial 
- symbol as well as a set of external 
by {a}. F symbolically summarizes 
considered as a result of the action of 

the already supressed microscopic degrees of freedom. We note that  this typical 
form of the evolution equations may be generalized in various ways: We also 
may include time delay-effects, non-local interactions in space, we can formulate 
them for time discrete processes, etc. 

At this stage the first step of the systematic method is completed. It is this 
step which has to be performed by the specialized scientific disciplines. The fol- 
lowing examples may clarify this statement. In laser physics the state vector is 
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~2 

Fig. 11. The general method of synergetics to analyze the behaviour of complex sys- 
tems. 

built from the atomic variables, i.e. the polarization and the inversion of the sin- 
gle a toms and the amplitudes of the light field in a semiclassical approach. The 
equations of motion for these variables may, as already mentioned, be derived 
from first principles. In hydrodynamics we can consider the velocity field, tem- 
pera ture  field, passive scalars etc. as further examples for variables consti tut ing 
U and the equations of motion are then governed by conservation laws like the 
conservation of mass, momentum,  energy, particle densities etc. In chemistry we 
may  consider concentrations of the chemicals as appropriate  variables and there 
interactions are provided through the special chemical reaction under considera- 
tion. The  same still remains true for morphological models in biology where the 
concentrations and interaction of morphogenes may be considered along simliar 
lines. I t  is worthwhile to mention that  even in social sciences such s ta te  vectors 
can be identified. In the following we wish to consider all these different systems 
from the unified view which has been introduced through the development of 
synergetics. 

The  second step consists in a further t rea tment  of equations (31). we are not 
able to analyze the complete global behavior of the solutions of (31) analytically; 
even if we confine ourselves to the deterministic part  which is contained in N.  For 
this reason we shall concentrate ourselves to more simple but  relevant subsets 
of the s tate  space F .  These are selected as to be of fundamental  importance  
for an understanding of the macroscopic behavior of the underlying system: We 
consider low dimensional reference states. The most simple ones are s ta t ionary 
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states which describe a homogeneous situation in time and space. Such states 
are usually referred to as the thermodynamic solution branch of the system. 
However, the method can be considerably generalized, i.e. we may even consider 
reference states which are not homogeneous in space or in time (periodic and 
quasi periodic states). For the moment beeing, however, we confine ourselves to 
a most simple reference state which is homogeneous in time and space. We may 
construct this state as a solution of 

t )  = 0 ---+ u = u 0 .  (32) 

Our third step then consists in the test of the stability of the selected state (32). 

Because we may alter external conditions through a change in the external 
parameters the stationary state U0 may lose its stability. Mathematical ly this 
means that  we are looking for instability regions in the parameter space spanned 
by {a}.  A general systematic method to achieve this goal is provided by a linear 
stability analysis. That  is we analyze the behavior of small deviations q from 
the stationary state U0 : 

U = Uo + q .  (33) 

We then immediately get the equation of motion for q from (31): 

Cl = L q  + O (llqll 2) . ( 3 4 )  

The elements of the linear matrix L are given through 

ONi 
L = (Lik) and Lik = ~ U=Uo" (35) 

Obviously the matrix L is still a function of the stationary state U0,  may depend 
on gradients as well as on the external parameters {a}. There is a well-known 
algebraic procedure to solve (34). The hypthesis 

q = q0 exp(At) (36) 

transforms (34) into a linear algebraic eigenvalue problem from which we may 
calculate the set of eigenvalues )~i and the corresponding eigenvectors which we 
denote by o i .  We assume that  they form a complete set. In the space of the 
external parameters instabilities are then indicated by the condition 

Re(A~) = 0. (37) 

We may now summarize the information we get from our linear stability analysis. 
First we find the regions of instability in the space of the external parameters. 
Secondly we find the eigenvectors which we interpret as the collective modes 
of the system and finally we obtain locally the directions in F along which the 
stat ionary state may become unstable. 
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The fourth step of the systematic treatment consists in a complete nonlinear 
analysis of (31). We note that  we may present the solutions of the full nonlinear 
equation in the form 

U = U0 + q and el = ~ ~ ( t ) o i .  (38) 
i 

We therefore can transform the original equation (31) into an equation for the 
amplitudes of the collective modes ~i(t) : 

~i(t) = Aik~k(t)  + Hi({~i}) +/~i .  (39) 

Here A is a diagonal matrix or at least of the Jordan canonical form, Hi contains 
the complete nonlinear terms, and -Pi denotes the correspondingly transformed 
fluctuating forces. We note that  the set of equations (39) is still exact. 

We now arrive at the central step 5, the application of the slaving principle. 
As already noted slaving means that  in the vicinity of a critical region in the 
space of external parameters only few modes, the so-called order parameters, 
dominate the behavior of the complex system on macroscopic scales. Obviously, 
even the linear stability analysis indicates amplitudes of the collective modes 
which finally will become the order parameters. Indeed, the linear movement 
yields a separation in time scales: The modes which become unstable will move 

1 
on a very slow time scale because of tRe(Au)! = - - ,  where we have identified 

Tu 
the index i with u to exhibit unstable behavior. In the vicinity of the critical 
point 7~ becomes extremely large. On the other hand the modes still remaining 
stable have a comparably short time scale which we denote by %. Therefore 
close to the instability region we find a hierarchy in the time scales 

>> vs. (40) 

Taking into account the nonlinear interaction of stable and unstable modes we 
expect for the long term behavior of the system that  the stable variables are 
moving in a way which is completely determined through the unstable modes, 
that  is the order parameters. This observation can be put into mathematical  
terms. We may split the set of {~i} into a set of modes which will become 
unstable and denote it by the vector u and the remaining set of stable modes 
which we collect into the vector s. Accordingly we split the set of equations (39) 
into 

fi = A ~ u +  Q(u , s )  + F ~ ,  (41) 

= Ass + P(u ,  s) + Fs .  (42) 

Slaving of the stable modes through the order parameters now means 

S ---- S I ( U , t  ) n t- $ 2 -  ( 4 3 )  

(43) expresses the fact that  the values of the stable modes are - besides some 
corrections s2 which arise from the fluctuations - completely determined by 
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the instantaneous values of the order parameters u. With the relation (43) the 
complete set of equations (41) and (42) can be drastically simplified. In fact we 
may use this result to eliminate the stable modes from the equations of the order 
parameters to arrive at the equation 

= ~ u +  Q (u, s l (u , t )  + s : )  + F ~ .  (44) 

This equation is the final order parameter equation. We observe that the idea 
of slaving generally leads to a drastic reduction of the degrees of freedom of 
the system which, however, now yields an exhaustive description of the system 
on macroscopic scales. The last step then consists in the solution of the order 
parameter equation (44) and in the identification of the macroscopically evolving 
ordered states which correspond to definite patterns or functioning of the system. 
The central problem which still remains to be solved rests in the construction of 
(43). 

3.2 On the  movemen t  of  the  slaved m o d e s  

We are concerned with the construction of 

s = sl(u, t) + s2. 

Our interest is devoted to the long term behavior of the slaved modes and we 
can formally integrate (43) in the following way 

t 

s = / exp(As(t--T)) [P(u,s) +Fs]T dr. 
- -OO 

(45) 

d ) -1 
Through (45) we define the operator ~-~ - As : 

( d  ) - 1  
s = ~ - A. [p(u, s) + Fsl �9 (46) 

We consider the purely deterministic case where Fs vanishes and s2 correspond- 
ingly (generalizations are given in Springer Series in Synergetics (1977-92)). We 
further introduce the operators 

= Q o--~ 

and in addition 

( d ) , /  - A s  P = exp(As(t-- T)) P(u,s)tdT. (48) 
(o) 

- -  0 0  
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A partial integration in (46) is now performed by using the above defined oper- 
ators in the following way: 

(d _As)-i (d _As)(o ) (d _As) -1 (d) (d-As) -1(0) (49) 

We use equation (49) to construct a systematic iteration scheme to find the 
solution (43). To this end we apply the ansatz 

N 
s = c , ( 5 0 )  

n=2 

where C (n) is precisely of order n in u. Correspondingly we may define P(n) 

and ( d / d t )  (n) . Inserting (49) and (50) into (45) we obtain the solution in the 
form 

( d - As V(n-m) (51) C (~) = 
m=o (m) 

where we have defined 1 [ )::] 
and the product over i has to be taken in such a way that  i _> 1 and ~ i = m .  
The sum means summing up over all different products. (52) provides us with 
a systematic method to construct (43) and it has meantime been generalized in 
various ways, especially by taking into account fluctuations, t ime-lag effects etc. 

3.3 The need for phenomenological  synergetics 

The need for phenomenological synergetics is based on the observation that  we 
meet many complex systems in nature which are built from complicated sub- 
systems which are not known in detail Haken et al. (1983). Many examples of 
such systems are provided in biology where, for example, we may find single cells 
as subsystems constituting macroscopic functional systems such as the nervous 
system, or the like. 

The possibility of a phenomenological approach is given by the fact tha t  the 
macroscopic behavior of a system, as captured in the order parameter equations, 
can be independent from microscopic details of the subsystems. It has, therefore, 
definite advantages to make inferences about the order parameter equations from 
purely macroscopic data. This method can be regarded as a top down approach 
being complementary to the bot tom up approach as presented in Sect. 3. (Fig. 
12). 
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control parameters: {ai}  

order parameters: u 
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enslaving: s = s (u )  

subsystems: q 

Fig.  12. Top down versus bot tom up approach 



266 H. Haken, A. Wunderlin, and S. Yigitbasi 

The phenomenological strategy can be characterized as follows: We t ry  to 
identify the relevant macroscopic quantities which are the control parameters 
and the order parameters. One may want to note that  the number of control 
parameters which are altered at the same time, essentially determines the types 
of instabilities which can be observed on macroscopic scales. We consider a pa- 
rameter space such as the one drawn in Fig. 13. 

The instability regions are provided from the linearized theory of Sect. 3 
by the condition R e A i =  0. In our example (Fig. 13) this equation represents 
a two dimensional manifold in three dimensional parameter space {a}. More 
generally, in an n-dimensional parameter space these are typically manifolds of 
dimension n - 1 or, in other words, of codimension 1. When we now change 
the control parameters along a 1-dimensional manifold (which is equivalent to 
the change of one control parameter),  we will typically meet a single manifold 
as indicated in the figure but  not a cut of two manifolds. Indeed, the slightest 
disturbance would remove us from such a cut. We therefore conclude that  when 
we change only one control parameter we typicMly have the situation that  only 
one eigenvalue in the real case and two conjugate complex eigenvalues in the 
case of complex eigenvalues can become unstable. Other instabilities will not be 
observed in reality. 
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control parameters: {al} 

order parameters: u 
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F ig .  13. Critical regions in three dimensional parameter space {a}. 
The two dimensional manifolds have been drawn for two possible order parameters. 



268 H. Haken, A. Wunderlin, and S. Yigitbasi 

It  turns out that  it is possible to give a precise mathematical form of these 
possible instabilities in the nonlinear case. This is provided by the mathematical  
method of normal forms Arnold (1983) which leads to the simplest mathematical  
structures which qualitatively completely describe the dynamics of our system 
near the instability point. We should mention, however, tha t  when we change 
more than one control parameter, the number of different types of possible in- 
stabilities increases. This implies that  we cannot give the normal form uniquely 
but  have to consider different types of instabilities. In order to test our inferences 
about  the underlying mathematical structure, we have to qualitatively compare 
predicted macroscopic behavior of the system with actual experimental obser- 
vations. This method has been applied to, e.g., social problems Wischert and 
Wunderlin (1993), Wunderlin and Haken (1984), to the coordination of human 
hand movements Haken et al. (1985), in EEG analysis Friedrich and Uhl (1992), 
etc. We shall exemplify this approach by applying it to an economicM problem, 
namely the crash and survival of a business enterprise. 

A s i m p l e  m o d e l  f r o m  e c o n o m i c s  We consider a company and infer an im- 
por tant  control parameter to be the amount of capital which constitutes its 
financial assets. For the company we identify as an important  order parameter 
the making of profit as gained by producing goods or by providing services. In 
this simplified model, we shall study the nonlinear behavior of the inferred order 
parameter  (making profit) when the control parameter (the amount of capital) 
is changed. 

When the method of normal forms (Arnold (1983)) is applied, the only insta- 
bility which can occur if we consider one control parameter only, is the so-called 
saddle-node bifurcation. When we denote the order parameter by u its dynamics 
is then described by the equation 

= ( o  - o c )  - . ( 5 3 )  

Before we discuss the simple mathematical properties of this equation we 
want to emphasize what we have gained at this step. When we change one con- 
trol parameter  under the above assumptions the whole behavior of the complex 
system company is completely determined by such a simple equation of motion 
for the order parameter. It  is important to note that  eq. (53) is a nonlinear 
equation which contains much more information than purely linear extrapola- 
tion could do. We substantiate this by first looking for the stat ionary solutions 
u0 of this equation, which are characterized by a vanishing time derivative. They  
are given by the following formula 

= ( 5 4 )  

We observe that  there is no stationary solution if a is smaller than a~. This re- 
sult which rests in the nonlinearity of the equation, can be interpreted as follows: 
There  is a minimal amount of capital needed so that  the company can exist. Be- 
yond ac two different solutions emerge, where it turns out that  u + is a stable 
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v(~) v(o) v(,) 

G : > g e  

Fig. 14. Potential for the saddle-node bifurcation for different values of a. 

solution (disturbances are damped) whereas u o is an unstable solution (small 
deviations are enhanced). Again, this has a simple interpretation. A company 
can only be stationary stable when it makes profits (positive value of the order 
parameter) and it will become unstable when it produces losses. The nonlinear 
effect here is concerned with the behavior in the neighbourhood of ac. One ob- 
serves tha t  the stationary state crashes fast with small changes in the control 
parameter (the slope of our curve goes to infinity). 

To get some insight into the dynamical behavior we write (53) as 

~(t) = - d y ( u ) .  (55) 

This allows us, following Haken (1983), Haken (1987), to interpret the dynamics 
of the order parameter in terms of the overdamped motion of a particle in the 
potential V which is given by 

1 3 (56) y ( u )  = - ( o  - ~c )~  + ~ , 

where we put  the arbitrary constant equal to zero. The potential V is drawn in 
Fig.(14) for three different values of a. 

In the case a < Gc no minimum appears in the potential which means  that  
the company will crash for any initial condition u(0). In the case a = ac we have 
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a turning point of the potential at the origin with slope zero. This indicates the 
appearance of a rest point at the origin. The smallest disturbance, however, still 
yields a crash of the company, i.e., our particle escapes into -c~ .  The situation 
changes dramatically when we consider the third case a > ac. The stationary 
points of the bifurcation diagram are now represented by the minimum (u0 +) and 
the maximum (u o) of the potential curve. It remains of relevance to note tha t  
not each initial condition of the order parameter leads to the stable minimum and 
a crash still remains possible. Again, this has a simple and nice interpretation. 
Consider a situation where a is smaller then ac and the particle is starting to 
escape to -c~.  If we were to avoid a crash we have to very quickly feed capital 
into the company in order to get a situation which is represented by our third 
case. The conclusion, then, is that  it is not always possible to avoid the crash. 
This is a property of the nonlinear behavior of the order parameter. We observe 
that  our nonlinear eq. (55) does indeed qualitatively reflect phenomena which 
can be observed in reality. 

4 D e l a y - i n d u c e d  i n s t a b i l i t i e s  

Here we shall present an important  generalization of the synergetic method de- 
veloped in section 3 to a class of functional differential equations. As a special 
example we consider so-called nonlinear delay equations, where we can observe 
delay-induced instabilities Wischert (1993), Wischert et al. (1994). 

Delay-induced instabilties provide a powerful tool in the investigation of reg- 
ular and irregular behavior observed in quite different disciplines. Delay effects 
especially appear in radio engineering sciences, in the domain of optical bistable 
devices and in engineering sciences. They play an important  role in physiologicM 
control systems and have also been applied to economic systems and to cognitive 
sciences. 

4.1 Some properties of delay differential equations 

The dynamical behavior of a nonlinear system is as usual described by a state 
vector U(t)  in an n-dimensional state space F .  When the time evolution of the 
state vector is influenced by a delay the autonomous delay differential equation 
assumes the form: 

U(t)  = N (U(t),  U( t  - T), {ai}) �9 (57) 

Again N denotes a nonlinear vector field which depends on the state vector U 
at the times t and t - T, where T stands for the time delay, and a parameter set 
{ai} which serves for measuring external influences on the system. Furthermore 

we assume the control parameters {ai} being kept fixed during the observation 
time so we can omit them in our notation. 

To gain solutions of eq. (57) at times t _> 0 it is necessary to define the state 
vector U(t)  in the entire interval I--T, 0]. Therefore we have to consider eq. (57) 
together with the initial condition 
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F 

. . . . . . . .  "C i 

-- qt (0)  i 
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! ..................... 0 \ ~  ............................. 0 time ..................... 

Fig. 15. Folding mechanism relating a history of q(t) C F to a single point qt C C. 

u ( e )  = g ( e ) ,  - ~  _< e _< 0, (58) 

where g is a given continuous initial vector valued function in a suitable 
function space C. 

Here we have to remark, tha t  the initial value problem given by eqs. (57) 
and (58) represents an unsatisfactionary situation in the sense, tha t  the vector 
valued function g is mapped  onto a t rajectory in the n-dimensional s tate  space 
F.  Such a mapping from an infinite dimensional function space onto a finite 
dimensional vector space is accompanied by a considerable loss of information. 
Different initial vector valued functions can lead to crossing of corresponding 
trajectories in F.  This means tha t  the uniqueness of solutions cannot be assured 
when we restrict our at tention to the state space F. 

To get rid of this problem we have to reformulate our description of the delay 
system. This can be performed by extending the finite dimensional s tate  space 
_P to an infinite function space C where the initial vector valued function g is 
defined. This point of view enables us to describe the state of the delay system 
at t ime t by an extended state vector Ut  C C and to refer to C as extended s ta te  
space. We therefore construct Ut  by adjusting the t rajectory U(t)  E F in the 
interval [t - r ,  t] according to the prescription (compare Fig. 15) 

u , ( ~ )  = u ( t  + e ) ,  - ~  _< ~ < 0. (59) 

We observe tha t  we can now retain uniqueness by considering the motion of 
Ut(r In order to formulate the evolution equation in the extended s tate  space 
we define a t ime evolution operator  T( t )  in the following way 
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Ut((9) : (T(t : )g)((9),  --T _< (9 < O. (60) 

The uniqueness of this mapping implies that T(t) has the properties of a 
semigroup. 

The original initial value problem can now be formulated in the form 

d u , ( e )  : (AU,)(e),  -~  < (9 < 0. 

The .4 represents the infinitesimal generator defined by 

(61) 

( .AU,(e))  : lira ! [ (7(~)U,(O) - U , (O) ] .  
e---*0 6 

(62) 

A leng%hy but straightforward calculation which has been performed in Wis- 
chert (1993), Wischert et al. (1994) and is based on identities like 

0 

u( t  - ~-) : f de~(e + ~-) u , ( e ) ,  
~ T  

leads to the following result for the infinitesimal generator 

{ d 
(,4U0 (e) 

( H I D , ( . ) ] ,  e = o .  

The vector valued functional Af can be expanded in powers of Ut according 
to 

H[u,( .)]  = ~ N  (k) [u,(-)], (64) 
k = l  

with 

0 0 

/ f . (k) ((91, " (gk)Ut,jl((91)'-Ut,jk((9k) ar~)[u~(.)] = d O 1 . . ,  d O k . ~ , ~ - ,  ..... 5 ,  "" ' " " 

(65) 
The matrix valued w (k) are combinations and products of 6-functions which 

result from the identities mentioned above. We note, however, that the form of 
this functional equation could also describe more general delay systems. 

The result (61) allows a systematic application of synergetic concepts. We 
note that this was not possible in the original formulation of the equations given 
in (57). 
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4.2 S t ab i l i t y  ana lyses  o f  t h e  re fe rence  s t a t e  

We assume that  there exisits a stationary state U0 which is homogeneous in 
time. The state must be a solution of the equation 

Af [U0] = O. (66) 

In the next step we analyse the behavior of the system in a certain neighbor- 
hood of the chosen reference state by considering small deviations qt from Uo. 
Inserting 

Ut(~)  = U0 + q, (67) 

into eq. (61). We obtain in the linear approximation 

d 6~ 
~ q t (  ) = (Anqt ) (~)  (68) 

{ d q ' ( ~  ~ < ~ (69) 
(ALq,)(~) = ~[q,(.)] , O = 0, 

0 

~[q,(.)] = / de ~(e) q~(O). (70) 
q 

- - 7 "  

,4L denotes the infinitesimal generator restricted to the linear case and the vector 
valued functional s is the linear approximation to Af in the neighborhood of U0 �9 
Its matrix valued density w is given as functionM derivative of A/" evaluated at 
the reference state 

w(O) - ~Af[qt(')l . 6q~(e) }q,_-0 (71) 

In order to get the linear eigenvalues we put the ansatz 

qt(~9) = ~bA(~)e ~'t (72) 

into the linear evolution equation (68) and obtain the following eigenvalue prob- 
lem for the infinitesimal generator .AL 

(AL  (e): Ar (73) 

Evaluating this eigenvalue problem in the interval I--T, 0) and taking into ac- 
count the definition of the infinitesimal generator in eq. (69) we obtain for the 
right-hand eigenfunctions ~b ~ the solution 

~ ( ~ )  = ~,~(O)e ~~ , (74) 

for arbitrary values of A. The eigenvalues are determined when we wish to guar- 
antee that  eq. (74) satisfies the eigenvalue problem eq. (73) for the single value 
(0 = 0. Here the eigenvalue equation assumes the form 

W(A)~(0 )  = A ~ ( 0 ) ,  (75) 
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Fig. 16. Schematic representation of the spectrum of a delay differential equation at 
an instability. 

where W(A) is given by 

0 

W(.X) = f dOw(e)e ~'e . 
- - T  

The corresponding characteristic equation for the eigenvalues A is given by 

det (W(A) - AI) = 0, (77) 

where I denotes the unity matrix. 
Without  proof we summarize some properties of the solutions to the charac- 

teristic equation. They correspond to a pure point spectrum (Fig. 16) with an 
infinite number of eigenvalues. In each finite strip, however, which is parallel to 
the imaginary axis only a finite set of eigenvalues is located. The eigenvalues ac- 
cumulate for Re(A) --* - c ~ .  Finally we note that  the real part of the eigenvalues 
is bounded from above. 

In order to formulate the adjoint eigenvalue problem we have to define a 
suitable scalar product. It turns out that the situation in our case is more so- 
phisticated: We are only able to define a bilinear form which only part ly fulfills 
the properties of a scalar product. However, it can be shown that  this bilinear 
form allows for the definition of projectors which guarantee for the projection 
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onto invariant subspaces of the linear problem. The bilinear form has the explicit 
form 

0 t9 
(**,r r162 - / / dsr o)w(o)r (78) 

- - ' r  0 

for a l lCt  E C a n d r  
The adjoint eigenvalue problem can now be formulated along similar lines 

as the original one. We find that the righthand and lefthand eigenvectors corre- 
sponding to the original and the adjoint problem, respectively form a biorthog- 
onal set which fulfills the relations 

(r r  = 6 ~ . ,  (79) 

when they have been properly normalized. 

4.3 Nonl inear  t r e a t m e n t  near  instabili t ies 

In general it appears to be impossible to present a general solution method for 
nonlinear functional differential equations. However, in the case of ordinary dif- 
ferential equations the concept of order parameters and enslaved modes (see 
section 3) provides for a powerful tool to formulate an equivalent simpler non- 
linear problem which allows for the discussion of qualitative properties close to 
instabilities. This motivates us to generalize this concept to functional differen- 
tial equations. 

We shall start from the complete nonlinear problem for the deviations from 
the reference state qt((0). Splitting the vector valued functional into its linear 
and strictly nonlinear part we obtain the functional differential equation 

d 
~q t (O)  = (Agqt) (O) + X0(O)Af[qt(-)]. (80) 

Here X0 denotes a matrix valued function with the properties 

In the following we shall discuss this equation close to an instability. We consider 
a situation where the control parameters are chosen in a way that the spectrum of 
the infintesimal generator is bounded from above by the imaginary axis. When 
we now appropriately change the control parameters two conjugate complex 
eigenvalues may cross the imaginary axis. Indeed we know from the spectral 
properties of the linear infinitesimal generator that only a finite number of modes 
can become unstable. 

We can now perform a decomposition of the state space C into a finite dimen- 
sional subspace 5/spanned by the unstable modes and an infinite dimensional 
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subspace $ corresponding to the remaining stable modes. To this end we define 
the projector 

p~. = r (~,.). (82) 

Here the matrix ~ ( O )  is defined by 

_ =  (r162 ~(0) (83) 

The adjoint matrix ~pt is defined correspondingly. In the subspace of the unstable 
modes they clearly fulfill the relation 

( ~ , ~ )  = I .  (84) 

We note that  the projection onto the stable directions can be performed by 
a projector Q~ which is given by 

Qs = (I - P~) . (85) 

In correspondence to the projection we can split the state vector into two 
parts 

qt(O) = Ut(O) + st(O).  (86) 

By the solution of the linear problem the following ansatz is suggested for the un- 
stable part, (compare the general discussion presented in Wischert et al. (1994)). 

U,(O) -- ~ ( O ) u ( t ) .  (87) 

By using the properties of the projectors we end up with the following set of 
equations 

d u ( t )  = A,u( t )  + #~(0)Af[#,(.)u(t)  + s(t)] , (88) 

d s , ( O )  = (ALs) (O) + [X0(O) - ~ . ( O ) ~ ( 0 ) ] H  [ ~ ( - ) u ( 0  + s(.)] �9 (89) 

We now introduce the fundamental concept of slaving by using the ansatz 

st(O) = h(O, u(t)) .  (90) 

Here we assume as usual that  h and its first derivative with respect to u vanish 
at u -- 0. One now can give an approximate solution for h by using the method 
of adiabatic elimination (Wischert et al. (1994)). The final result for the order 
parameter equation then reads 

~u(t)d = Auu(t) + ~Put (0)A l [~hu(-)u(t ) + h(., u(t))] . (91) 

Our result consists in an approximate order parameter equation which no longer 
contains any delay terms. This means that  we could drastically simplify our set 
of delay equations when we are close to an instability. The original functional 
differential equation has been reduced to an ordinary differential equation. We 
note that  this became only possible by using the concept of extended state space. 
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Fig. 17. A PLL-circuit as a realiziation of a delay differential equation. 

4.4 An example 

Here we mention an example which can be physically realized by a first order 
phase-locked loop (compare Fig. 17). 

It can be shown that the phase variable r which measures the difference of 
the phase of the two oscillators indicated in the figure obeys an equation of the 
form 

r --- - K  sin [r - T)] (92) 

when both oscillators are in resonance. K denotes a constant which represents 
the properties of the phase-locked loop. To analyze this equation we choose as 
a reference state 

r = l~r (93) 

where l is an arbitrary integer. The stable stationary states r = 0 (mod27r) 
loose their stability when the delay time r exeeds the value T = 7r /2K .  Apply- 
ing the general methods and using a rotating wave approximation we find the 
following order parameter equation for the complex order parameter u( t )  

d u ( t )  = A+u( t )  - b u( t )  2u(t) (94) 

which can be identified as the normal form of a Hopf bifurcation. A detailed 
calculation is given in Wischert (1993), Wischert et al. (1994). 

5 C o n c l u s i o n s  

We have presented the general methods of synergetics in connection with the 
central problem of self-organization. The example of laser action, where the 
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evolution equations for the microscopy are known, was worked out in some detail 
and showed that  the ideas of synergetics can be tested. An example from economy 
was given to introduce the idea of a 'phenomenological' synergetics, i.e., the 
synergetic understanding of systems with a (largely) unknown microscopy. These 
examples, and the plethora of other examples in the literature, lead us to the 
conclusion that  the methods of synergetics offer a powerful starting point in 
trying to understand the behavior of complex systems from a universal point of 
view. It is our impression that  this idea has gained rather general acceptance 
over the last decades. 
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Discuss ion of  Arne Wunderl in's  Paper  

Bat te rman,  Chirikov, Miller, Schurz, Thaler*, Weingartner, Wunderlin 

C h i r i k o v :  Wha t  is the - how did you call it - "synergetic computer" ,  you men- 
tioned at the beginning? 
W u n d e r l i n :  The idea of a synergetic computer  is based on the methodes of  
synergetics, namely the concept of order parameters  and slaving. As an example 
we consider a device which is trained to recognize and discriminate, for example,  
faces of several people. These faces are implemented into the device by put t ing a 
grid on the faces of say 60 to 60 pixels and at t r ibute a certain grey value to each 
of these pixels. These pixels are considered as representing a high dimensional 
vector space. Within this vector space the pictures which have to be recognized 
form a low dimensional subspace. This low dimensional subspace is identified 
with the space of the order parameters.  When a picture is offered to tha t  device 
a gradient dynamic is implemented to the device which drives the corresponding 
s tate  vector of this picture quickly into the subspace of the order parameters  
and in tha t  subspace to a minimum which just represents the offered pattern.  I t  
becomes obvious tha t  the device can act as an associative memory. Differences 
between the offered pat tern  and the pat tern  which can be recognized are ruled 
out by the gradient dynamics. The latter can be considered to note tha t  one is 
able to implement invariances to the device which are concerned with a shift and 
a rotat ion of the pat terns  which have to be recognized. 
T h a l e r :  Wha t  do you mean by chaotic behavior and how do you measure it? 
W u n d e r l i n :  We consider here low-dimensional chaos. This can be tested and 
characterized by the dimension of the attractor,  the positive Lyapunov-exponents  
and by the universal scenario which yields chaotic behaviour (if it exists). 
Mi l le r :  Can you say something more about  the higher level laws, which emerge - 
to use tha t  word - and are not deducible from the microscopic theories? Are there 
local laws pertaining to particular systems, or are they universal and applying to 
all systems of the same type? I am interested in whether there could emerge in 
one system something general, but in another system something quite different. 
Is tha t  what  you have in mind? 
W u n d e r l i n :  Wha t  happens here is that  when one starts  from the microscopic 
level by this systematic methods one cannot derive these macroscopic classifica- 
tion laws. This classification is based on the notion of topological equivalence. 
This idea of topological equivalence is really a new form of law - I think - which 
you cannot deduce from the microscopic properties but which are consistent 
with the macroscopic properties. The corresponding forms are a list of all these 
possible universal law forms. And that  it is possible tha t  these normal forms 
qualitatively describe the critical behaviour of a large class of systems. Not only 
tha t  class but also the representation by classes itself. 
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Mi l le r :  Statistical laws are normally thought to be laws tha t  cannot be derived 
from the microscopic basis. 
W u n d e r l i n :  There are models how to do it. 
T h a l e r :  W h a t  do you mean by intermittency? 
W u n d e r l i n :  Intermit tency describes a pathway to chaos. Roughly one may  say 
tha t  one has a regularly behaving system and starts  to change an external pa- 
rameter.  Then the regular behaviour may become unstable and burst  of irregular 
behaviour appear.  After a burst the system behaves again regularly up to the 
moment  when a new burst  occurs. Changing the parameter  further the t ime in- 
tervalls of regular behaviour become shorter and shorter and the final behaviour 
is completely chaotic. 

C h i r i k o v :  But this is a particular type of intermittency. Could you say in gen- 
eral tha t  the intermittency is random patterns which is a typical si tuation in a 
complex system. This is essential for what you call intermittency, you agree? 
W u n d e r l i n :  Yes, I would expect that.  
Schurz :  I have a conceptual question: Assume a system of the sort you described 
consisting of subsystems being open you have some control parameters  which you 
can change in degree. Do you think that  every system of tha t  kind exhibit  the 
behavior you described, namely that  there is first microscopic chaos and then 
there are macroscopic ordering structures and then there is a low dimension 
chaos? Do you think tha t  it holds generally for all kinds of systems in nature  or 
do you think tha t  for some systems no macroscopic ordering will develop? 
W u n d e r l i n :  We can only give our necessary conditions for the chaos but  we do 
not have sufficient conditions. 
Schurz :  Wha t  are these necessary conditions? 
W u n d e r l i n :  One example we saw when there are parameter  regions where you 
miss the ordered states. It  directly goes into chaotic behaviour. But  I think 
nobody is able to give sufficient conditions. 
Schurz :  I t  would be philosophically interesting because it is connected with 
the questions for instance: is it an accident or not an accident tha t  there exists 
intelligence and evolution in the universe? 
Mi l le r :  There  could be an art  in choosing control parameters,  for instance. Is 
it more than  that?  A casual description says tha t  systems tha t  s tar t  off very 
similar may  evolve very differently. The question is: what  is it for them to s tar t  
off similarly? One might very well say that  because the systems evolve so differ- 
ently they clearly were different in the beginning. In what  way does one get the 
intuitive feeling, tha t  the chosen control parameters  are the right ones? 
W u n d e r l i n :  The reason why I called this art is the observation tha t  the medical 
doctor with great experience can identify very well an EEG. And we have a lot 
of difficulties to reproduce this. The idea was to construct an appara tus  which 
makes it much more probably tha t  the doctor or at least we are independent 
of the quality of the doctor and therefore you must find the leading modes 
which behave usually chaotic. But  which modes are mainly impor tant  for these 
dynamics? Wha t  we take here is a method developed by Karhunen and Loeve 
which allows from a linear approximation to find the most prominent  modes of 
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the system. 
Mi l l e r :  Are there then examples where it is not known how to do this? 
W u n d e r l i n :  Yes, more than examples where it is known. 
Mi l l e r :  I t  sounds self-reinforcing in a way, appealing to the work of experienced 
people and so on. 
W u n d e r l i n :  There are also people who t ry  to apply this to social processes, for 
example the formation of opinion might also have such critical situations. 
Mi l le r :  I am interested to see whether the different guesses could be tested. Are 
there crucial experiments? 
W u n d e r l i n :  I do not know about  them in social systems. But  what  I want to 
emphasize is that  you can make predictions in the form of well-defined possibil- 
ities which appear  to me more valuable than  a linear extrapolation. 
W e i n g a r t n e r :  You said tha t  these new laws which emerge from the synergetics 
on the macroscopic level - they are consistent, you say - with the basic laws of 
quan tum mechanics or on the microscopic level at least. I am just  wondering 
what  you mean by "consistent". Your claim is stronger of course if there is 
already a certain dependency here. But  if they are quite independent then the 
claim tha t  they are consistent with each other is not very strong because it would 
just  mean so far they don ' t  touch each other or so far we cannot connect them or 
something like that .  Or is it just  so that  so far no difficulty has been discovered, 
so far no consequence of these new laws was coming into conflict with what  we 
know as well corroborated microscopic laws. So I was just  wondering whether 
you could be a little bit more detailed on this point. 
W u n d e r l i n :  For example if you consider statistical mechanics and compare  this 
to these macroscopic motions then you will see tha t  these motions are possible 
on the level of statistical mechanics but are very very rare. So it means tha t  
you need the new laws on the microscopic scale but  the macroscopic introduces 
really new things. For example, this law of equi-partition says in thermodynamics  
roughly all degrees are freedom - are exited in the same way. And here you have 
another  law where you are far from equilibrum where a few degrees are exited 
very strongly and others not. So these are notions which are consistent with the 
microscopic dynamics but  are very rare if I use the laws of statistical mechanics. 
W e i n g a r t n e r :  Is it just  similar to the effect tha t  you discover sometimes hidden 
symmetr ies  - I mean symmetries  tha t  are hidden in such a way tha t  they are 
not used but then you find out they can be used, they are allowed. So in some 
rare cases they are in fact used. 
W u n d e r l i n :  I never tried to look in this direction. 
W e i n g a r t n e r :  A very simple example from biology would be tha t  snails have 
a certain spiral, but very rarely the other way round. So there it is a so-called 
hidden symmetry  which permits both directions but which is usually not used 
or only very rarely (perhaps because of special asymmetric  initial conditions 
within the evolution). And so in your case by analogy statistical mechanics would 
provide the (hidden) symmetric  laws behind the apparant  symmetry-breaking 
of motions on the macroscopic level which occur very rarely, maybe  because of 
some asymmetr ic  initial conditions. 
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W u n d e r l i n :  I'll look for that  ... 
Schurz :  Maybe you mean with "consistent" that  there exist trajectories on 
possible initial conditions which describe this macroscopic structures. But you 
don' t  know the initial conditions here. 
Mil ler :  But  that  does not sound like the emergence of new laws. 
Schurz :  This is right, it would imply that  are not really new laws, new funda- 
mental laws. 
Mil ler :  Doubtless the microscopic laws do not say everything that  there is to be 
said about the system. That  does not imply that  we need new laws in addition 
to the microscopic laws. 
W u n d e r l i n :  ... New laws in the sense that  they cannot be derived from the 
microscopic level. 
Mil ler :  But they could just be the microscopic initial conditions. 
Ch i r ikov :  You do derive this instability, and the result of instability from an 
equation. 
W u n d e r l i n :  But for this we need a experimental verification. From the micro- 
scopic calculations we cannot deduce the existence of these laws. You always will 
arrive at a normal form but cannot derive the whole consequences of topological 
equivalence. 
Ch i r ikov :  Do you think it is some principal difficulty or you just had not enough 
time to do it? 
W u n d e r l i n :  No, I really believe this concept originally introduced by Poincard 
is a mathematical concept and what we t ry  to do is to give it a basis in natural  
sciences. 
B a t t e r m a n :  Do the normal forms describe a whole class of systems which are 
structurally stable? 
W u n d e r l i n :  It depends on the degeneracy given by symmetries. 
B a t t e r m a n :  Are these normal forms similar to normal forms that  you get de- 
scribing catastrophies. But in catastrophe theory they've got a pre t ty  high clas- 
sification. 
W u n d e r l i n :  Yes, this is a very special case where you have a potential dynamics. 
We looked also for normal forms where no potential conditions are valid. 
Chi r ikov :  At the beginning you defined this synergetic system of models as some 
complicated open systems. Does this mean that  the fundamental equations of 
the synergetic theory are always, by definition, stochastic equations including 
some noise? Do you start  with the stochastic equation and then t ry  to calculate 
consequences? 
W u n d e r l i n :  Yes. 
Ch i r ikov :  You did not begin with dynamical equations. You don' t  use that  
originally. 
W u n d e r l i n :  Originally not, but we try to approximate it macroscopically by 
dynamical equations. And often we can justify tha t  the fluctuations can be 
neglected. 
Ch i r ikov :  Now it is clear. 


